Skip to main content

Advertisement

Log in

Separation Between Silicon and Aluminum Powders Contained Within Pulverized Scraped Silicon-Based Waste Solar Cells by Flotation Method

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

There are few study examples on the separation of metals by floating method. In this study, separation of silicon and aluminum, which are the main components of silicon-based solar cell module, was carried out by floating method in order to purify silicon from waste solar cell module. The selection of surfactant, control of electric charge, wettability of the solid particles, surface tensions, and bubble surface area are important for separation of solids by floating method. Sodium dodecyl sulfate (SDS) can increase the hydrophobicity of aluminum powder due to the difference of surface potentials between silicon and aluminum. SDS behaves as a collector of aluminum as well as a frothing agent to decrease the bubble size. At a SDS concentration of 2 g/L and sample dipping time of 10 min, 80.1 mass% of aluminum was floated and separated, and the sedimentary silicon reached a purity of 90.7% from a mixture of 50 mass% aluminum and 50 mass% silicon. Finally, at a pH value of 7.0, SDS concentration between 1.0 and 2.5 g/L and air flow rate of 2.5 L/min (STP) were suitable experimental conditions to purify silicon from a mixture of silicon and aluminum by flotation separation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. IEA International Energy Agency (2018) Snaphot of global photovoltaic, In: Report IEA PVPS T1-33:2018

  2. Louwen A, van Sark WGJHM, Faaij APC, Schropp RE, Ruud I (2016) Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development. Nat Commun 13728(7):1–9

    Google Scholar 

  3. Ministry of the Environment Government of Japan (2016) http://www.env.go.jp/press/files/jp/102441.pdf. Accessed 28 Jan 2019

  4. Dias P, Schmidt L, Gomes LB, Bettanin A, Veit H, Bernardes AM (2018) Recycling waste crystalline silicon photovoltaic modules by electrostatic separation. J Sustain Metall 4(2):176–186

    Article  Google Scholar 

  5. Park J, Kim W, Cho N, Lee H, Pak N (2016) An eco-friendly method for reclaimed silicon wafers from a photovoltaic module: from separation to cell fabrication. Green Chem 18:1706–1714

    Article  CAS  Google Scholar 

  6. Tsoutsos T, Frantzeskaki N, Gekass V (2005) Environmental impacts from the solar energy technologies. Energy Policy 33(3):289–296

    Article  Google Scholar 

  7. Matsubara T, Uddin MA, Kato Y, Kawanishi T, Hayashi Y (2018) Chemical treatment of copper and aluminum derived from waste crystalline silicon solar cell modules by mixed acids of HNO3 and HCl. J Sustain Metall 4(3):378–387

    Article  Google Scholar 

  8. Union European (2012) Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE). Off J Eur Union 197:38–71

    Google Scholar 

  9. Doi T, Tsuda I, Unagida H, Murata A, Sakuta K, Kurokawa K (2001) Experimental study on PV module recycling with organic solvent. Solar Energy Mater Solar Cells 67(1):397–403

    Article  CAS  Google Scholar 

  10. Jung B, Park J, Seo D, Park N (2016) Sustainable system for raw-metal recovery from crystalline silicon solar panels: from noble-metal extraction to lead removal. Sust Chem Eng 4(8):4079–4083

    Article  CAS  Google Scholar 

  11. Radziemska EK, Ostrowski P (2010) Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules. Renew Energy 35(8):1751–1759

    Article  Google Scholar 

  12. Kang S, Yoo S, Lee J, Bonghyun B, Ryu H (2012) Experimental investigations for recycling of silicon and glass from waste photovoltaic modules. Renew Energy 47:152–159

    Article  CAS  Google Scholar 

  13. Yi YK, Kim HS, Tran T, Hong SK, Kim MJ (2014) Recovering valuable metals from recycled photovoltaic modules caption list. J Air Waste Manag Assoc 64(7):797–807

    Article  CAS  Google Scholar 

  14. Huang WH, Shin WJ, Wang L, Sun WC, Tao M (2017) Strategy and technology to recycle wafer-silicon solar modules. Sol Energy 144(1):22–31

    Article  CAS  Google Scholar 

  15. Acker J, Henbge A (2007) Chemical analysis of acidic silicon etch solutions II. Determination of HNO3, HF and H2SiF6 by ion chromatography. Talanta 72:1540–1545

    Article  CAS  Google Scholar 

  16. New Energy and Industrial Technology Development (NEDO) (2015) https://www.nedo.go.jp/content/100758482.pdf. Accessed 28 Jan 2019

  17. Mukai S (1959) On floatation method [Fuyusenkoho ni tuite]. J Chem Eng Jpn 23(7):480–486

    Google Scholar 

  18. Wada M (1943) Investigations into the network effect of loose foams in liquid solutions on paraffin. Contributions to floating foam processes [Untersuchungen uber die netzwirkung der schaumer in wasserigen losungen auf parain. Beitrage zum schaumschwimmverfahren]. (Mitteihung 1-2). J Min Inst Jpn 59(704):681–698

    Google Scholar 

  19. Isomatsu R (1961) On removal of iron sulfide from pottery stone by flotation method [Fusenho niyoru toseki no ryukatetsu zyokyo ni tsuite]. J Chem Eng Jpn 25(7):547–553

    Google Scholar 

  20. Numata Y, Yokoyama Y, Wakamatsu T (1979) Fundamental studies on the behavior of a-terpineol and cineol as a frother in sulfide mineral flotation. J Min Metall Inst Jpn 95(1098):461–465

    CAS  Google Scholar 

  21. Chen Z, Nishimura S, Sasaki H, Usui S (1990) Cationic flotation of fine quartz using dodecyltrimethylammonium bromide (DTAB). Shigen-to-Sozai 106(9):521–525

    Article  CAS  Google Scholar 

  22. Wang J, Wang H, Wang C, Zhang L, Wang T, Zheng L (2017) A novel process for separation of hazardous poly (vinyl chloride) from mixed plastic wastes by froth flotation. Waste Manag 69:59–65

    Article  CAS  Google Scholar 

  23. Wang C, Wang H, Fu J, Zhang L, Luo C, Liu Y (2015) Flotation separation of polyvinyl chloride and polyethylene terephthalate plastics combined with surface modification for recycling. Waste Manag 45:112–117

    Article  Google Scholar 

  24. Marques GA, Tenorio AS (2000) Use of froth flotation to separate PVC/PET mixtures. Waste Manag 20(4):265–269

    Article  CAS  Google Scholar 

  25. Truc NTT, Lee BK (2016) Sustainable and selective separation of PVC and ABS from a WEEE plastic mixture using microwave and/or mild-heat treatment with froth flotation. Environ Sci Technol 50(19):10580–10587

    Article  Google Scholar 

  26. Eivazihollagh A, Tejera J, Svanedal I, Edlund H, Blanco A, Norgren M (2017) Removal of Cd2+, Zn2+, and Sr2+ by ion flotation, using a surface-active derivative of DTPA (C12-DTPA). Ind Eng Chem Res 56(38):10605–10614

    Article  CAS  Google Scholar 

  27. Dey S, Paul GM, Pani S (2013) Flotation behaviour of weathered coal in mechanical and column flotation cell. Powder Technol 246:689–694

    Article  CAS  Google Scholar 

  28. Yamasaki T (1969) Application of surfactants for flotation. J Jpn Oil Chem Soc 18(7):417–426

    Article  CAS  Google Scholar 

  29. Esumi K (1997) Characteristics and application of surfactant adsorbed layers formed on particles. J JSCM 70(10):675–685

    CAS  Google Scholar 

  30. Umeda H, Sasaki A, Takahashi K, Haga K, Takasaki Y, Kuzuno E, Shibayama A (2011) Flotation and process design for precious metals recovery from powdery waste generated by polishing process of dental alloy. J MMIJ 127(10_11):649–655

    Article  Google Scholar 

  31. Nakazawa H, Sato T, Oikawa K, Kagesawa K (1993) Recovery of precious metals from dental material waste by flotation. Shigen-to-Sozai 109(11):879–884

    Article  CAS  Google Scholar 

  32. Ito R, Dodbiba G, Sadaki A, Ahn JW, Fujita T (2007) Recovery of heavy metals by flotation from incinerated automobile shredder residues. Resour Process 54(3):152–157

    Article  Google Scholar 

  33. Matsuoka I (1982) Flotation of oxide minerals. J Min Metall Inst Jpn 98(1134):664–670

    CAS  Google Scholar 

  34. Somasundaran P, Fuerstenau DW (1966) Mechanisms of alkyl sulfonate adsorption at the alumina-water interface. J Phys Chem 70(1):90–96

    Article  CAS  Google Scholar 

  35. Aixing F, Somasundaran P, Turro NJ (1997) Adsorption of alkyltrimenthylammonium bromides on negatively charged alumina. Langmuir 13(3):506–510

    Article  Google Scholar 

  36. Koopal LK, Lee EM, Bohmer MR (1995) Adsorption of cationic and anionic surfactants on charged metal oxide surfaces. J Colloid Interface Sci 170(1):85–97

    Article  CAS  Google Scholar 

  37. Thermo Scientific™. Sodium Dodecyl Sulfate (SDS), Lauryl. https://www.thermofisher.com/order/catalog/product/28364. Accessed 28 Jan 2019

  38. Kato Y, Hanazawa K, Baba H, Nakamura N, Yuge N, Sakaguchi Y, Hiwasa S, Aratani F (2000) Purification of metallurgical grade silicon to solar grade for use in solar cell wafers. Tetsu-to-Hagane 86(11):717–724

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was carried out under the project of NEDO (New Energy and Industrial Technology Development Organization), entitled “Development project for photovoltaic (PV) recycling technology”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiei Kato.

Additional information

The contributing editor for this article was Hongmin Zhu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harada, S., Uddin, M.A., Kato, Y. et al. Separation Between Silicon and Aluminum Powders Contained Within Pulverized Scraped Silicon-Based Waste Solar Cells by Flotation Method. J. Sustain. Metall. 5, 551–560 (2019). https://doi.org/10.1007/s40831-019-00246-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-019-00246-6

Keywords

Navigation