Skip to main content
Log in

Asymptotic Stability of Equilibria for Screened Vlasov–Poisson Systems via Pointwise Dispersive Estimates

  • Manuscript
  • Published:
Annals of PDE Aims and scope Submit manuscript

Abstract

We revisit the proof of Landau damping near stable homogenous equilibria of Vlasov–Poisson systems with screened interactions in the whole space \(\mathbb {R}^d\) (for \(d\ge 3\)) that was first established by Bedrossian, Masmoudi and Mouhot in [5]. Our proof follows a Lagrangian approach and relies on precise pointwise in time dispersive estimates in the physical space for the linearized problem that should be of independent interest. This allows to cut down the smoothness of the initial data required in [5] (roughly, we only need Lipschitz regularity). Moreover, the time decay estimates we prove are essentially sharp, being the same as those for free transport, up to a logarithmic correction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We have chosen to write the remainder as functions of \((x-vt,v)\), instead of (xv), in view of the expected large time behavior, which is that of free transport.

References

  1. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343. Springer, Heidelberg (2011)

  2. Bardos, C., Degond, P.: Global existence for the Vlasov–Poisson equation in $3$ space variables with small initial data. Ann. Inst. H. Poincaré Anal. Non Linéaire 2(2), 101–118 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bardos, C., Golse, F., Nguyen, T., Sentis, R.: The Maxwell–Boltzmann approximation for ion kinetic modeling. Physica D 376(377), 94–107 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  4. Bedrossian, J., Masmoudi, N., Mouhot, C.: Landau damping: paraproducts and Gevrey regularity. Ann. PDE 2(1), Art. 4, 71 (2016)

  5. Bedrossian, J., Masmoudi, N., Mouhot, C.: Landau damping in finite regularity for unconfined systems with screened interactions. Commun. Pure Appl. Math. 71(3), 537–576 (2018)

    Article  MathSciNet  Google Scholar 

  6. Bouchut, F.: Global weak solution of the Vlasov–Poisson system for small electrons mass. Commun. Partial Differ. Equ. 16(8–9), 1337–1365 (1991)

    Article  MathSciNet  Google Scholar 

  7. Choi, S.-H., Kwon, S.: Modified scattering for the Vlasov–Poisson system. Nonlinearity 29(9), 2755–2774 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  8. Choi, S.-H., Ha, S.-Y., Lee, H.: Dispersion estimates for the two-dimensional Vlasov–Yukawa system with small data. J. Differ. Equ. 250(1), 515–550 (2011)

    Article  MathSciNet  Google Scholar 

  9. Glassey, R.T.: The Cauchy Problem in Kinetic Theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1996)

    Book  Google Scholar 

  10. Grenier, E.: On the nonlinear instability of Euler and Prandtl equations. Commun. Pure Appl. Math. 53(9), 1067–1091 (2000)

    Article  MathSciNet  Google Scholar 

  11. Han-Kwan, D.: Quasineutral limit of the Vlasov-Poisson system with massless electrons. Commun. Partial Differ. Equ. 36(8), 1385–1425 (2011)

    Article  MathSciNet  Google Scholar 

  12. Han-Kwan, D., Hauray, M.: Stability issues in the quasineutral limit of the one-dimensional Vlasov–Poisson equation. Commun. Math. Phys. 334(2), 1101–1152 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  13. Han-Kwan, D., Nguyen, T.T.: Nonlinear instability of Vlasov–Maxwell systems in the classical and quasineutral limits. SIAM J. Math. Anal. 48(5), 3444–3466 (2016)

    Article  MathSciNet  Google Scholar 

  14. Horst, E.: On the asymptotic growth of the solutions of the Vlasov–Poisson system. Math. Methods Appl. Sci. 16(2), 75–86 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  15. Hwang, H.-J., Rendall, A., Velázquez, J.-L.: Optimal gradient estimates and asymptotic behaviour for the Vlasov–Poisson system with small initial data. Arch. Ration. Mech. Anal. 200(1), 313–360 (2011)

    Article  MathSciNet  Google Scholar 

  16. Lions, P.-L., Perthame, B.: Propagation of moments and regularity for the $3$-dimensional Vlasov–Poisson system. Invent. Math. 105(2), 415–430 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  17. Mouhot, C., Villani, C.: On Landau damping. Acta Math. 207(1), 29–201 (2011)

    Article  MathSciNet  Google Scholar 

  18. Nguyen, T.T.: Derivative estimates for screened Vlasov–Poisson system around Penrose-stable equilibria. Kinet. Relat. Models 13(6), 1193–1218 (2020)

    Article  MathSciNet  Google Scholar 

  19. Pfaffelmoser, K.: Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data. J. Differential Equations 95(2), 281–303 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  20. Schaeffer, J.: Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions. Comm. Partial Differential Equations 16(8–9), 1313–1335 (1991)

    Article  MathSciNet  Google Scholar 

  21. Smulevici, J.: Small data solutions of the Vlasov-Poisson system and the vector field method. Ann. PDE 2(2), Art. 11, 55 (2016)

  22. Stein, E., Shakarchi, R.: Complex Analysis. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  23. Wang, X.: Decay estimates for the 3D relativistic and non-relativistic Vlasov-Poisson systems. Arxiv:1805.10837

Download references

Acknowledgements

TN was partially supported by the NSF under grant DMS-1764119 and an AMS Centennial Fellowship, DHK by the grant ANR-19-CE40-0004 and FR by the grants ANR ODA and Singflows. Part of this work was done while TN was visiting Princeton University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Rousset.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

We recall (1.8) for the Littlewood–Paley decomposition in \(\mathbb {R}^n\) . In the paper, we use it (for \(n=d\) and for \(n= d+1\)). Let us state the classical Bernstein Lemma.

Lemma A.1

For every \(p \in [1, + \infty ]\) and any multi-index \(\alpha \), there exist \(c>0\), \(C>0\) such that for every \(u \in L^p\), we have Bernstein’s inequalities:

$$\begin{aligned} c2^{ |\alpha | q}\Vert u_{q}\Vert _{L^p} \le \Vert \partial ^\alpha (u_q )\Vert _{L^p} \le C 2^{ |\alpha | q}\Vert u_{q} \Vert _{L^p}, \quad \forall q \in \mathbb {Z}. \end{aligned}$$
(A.1)

We refer for example to [1, Chapter 2, Lemma 2.1] for the proof. As an application, we get

Lemma A.2

Let \(P_{1}\) and \(P_{2}\) be homogeneous polynomials of degree 1 and 2. For all \(p \in [1,+\infty ]\), for all \(u \in L^p\), for all \(\ell \in \mathbb {N}\),

$$\begin{aligned} \Vert P_{1}(D) ( 1 - \Delta )^{-1} u \Vert _{L^p}&\lesssim \Vert u \Vert _{L^p}, \end{aligned}$$
(A.2)
$$\begin{aligned} \Vert P_{2} (D) ( 1 - \Delta )^{-1} u_\ell \Vert _{L^p}&\lesssim 2^{\ell \delta } \Vert u_{\ell } \Vert _{L^p}, \end{aligned}$$
(A.3)

where \(u_\ell \) is defined as in (1.8) and \(\delta \in (0,1)\) is arbitrarily small.

Proof

By using the homogeneous Littlewood–Paley decomposition and the Bernstein inequalities, we get

$$\begin{aligned} \Vert P_{1}(D) ( 1 - \Delta )^{-1} u \Vert _{L^p} \lesssim \sum _{q \in \mathbb {Z}} { 2 ^{q} \over 1 + 2^{2 q} } \Vert u_{q}\Vert _{L^p} \lesssim \Vert u \Vert _{L^p} (\sum _{q \le 0} 2^q + \sum _{q \ge 0} 2^{-q}). \end{aligned}$$

For the second estimate, we write

$$\begin{aligned} \begin{aligned} \Vert P_{2}(D) ( 1 - \Delta )^{-1} w \Vert _{L^p}&\lesssim \sum _{q \in \mathbb {Z}} { 2 ^{2q} \over 1 + 2^{2 q} } \Vert w_{q}\Vert _{L^p}\\&\lesssim \Vert w\Vert _{L^p} \sum _{q < 0} 2^{2q} + \sup _{q \ge 0} 2^{q \delta } \Vert w_{q}\Vert _{L^p} \sum _{q \ge 0} 2^{-q \delta } \end{aligned} \end{aligned}$$

and apply it for \(w= u_\ell \), which ends the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han-Kwan, D., Nguyen, T.T. & Rousset, F. Asymptotic Stability of Equilibria for Screened Vlasov–Poisson Systems via Pointwise Dispersive Estimates. Ann. PDE 7, 18 (2021). https://doi.org/10.1007/s40818-021-00110-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40818-021-00110-5

Keywords

Navigation