Skip to main content
Log in

Beery VMI and Brain Volumetric Relations in Autism Spectrum Disorder

  • Published:
Journal of Pediatric Neuropsychology Aims and scope Submit manuscript

Abstract

Although diminished proficiency on tasks that require visual-motor integration (VMI) has been reported in individuals with autism spectrum disorder (ASD), very few studies have examined the association between VMI performance and neuroanatomical regions of interest (ROI) involved in motor and perceptual functioning. To address these issues, the current study included an all-male sample of 41 ASD (ages 3–23 years) and 27 typically developing (TD) participants (ages 5–26 years) who completed the Beery-Buktenica Developmental Test of Visual-Motor Integration (Beery VMI) as part of a comprehensive neuropsychological battery. All participants underwent 3.0 T magnetic resonance imaging (MRI) with image quantification (FreeSurfer software v5.3). The groups were statistically matched on age, handedness, and intracranial volume (ICV). ASD participants performed significantly lower on VMI and IQ measures compared with the TD group. VMI performance was significantly correlated with FSIQ and PIQ in the TD group only. No pre-defined neuroanatomical ROIs were significantly different between groups. Significant correlations were observed in the TD group between VMI and total precentral gyrus gray matter volume (r = .51, p = .006) and total frontal lobe gray matter volume (r = .46, p = .017). There were no significant ROI correlations with Beery VMI performance in ASD participants. At the group level, despite ASD participants exhibiting reduced visuomotor abilities, no systematic relation with motor or sensory-perceptual ROIs was observed. In the TD group, results were consistent with the putative role of the precentral gyrus in motor control along with frontal involvement in planning, organization, and execution monitoring, all essential for VMI performance. Given that similar associations between VMI and ROIs were not observed in those with ASD, neurodevelopment in ASD group participants may not follow homogenous patterns making correlations in these brain regions unlikely to be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, A. L., Lee, J. E., Lazar, M., Boudos, R., DuBray, M. B., Oakes, T. R., et al. (2007). Diffusion tensor imaging of the corpus callosum in autism. NeuroImage, 34, 61–73. https://doi.org/10.1016/j.neuroimage.2006.08.032.

    Article  PubMed  Google Scholar 

  • Beery, K. E. (1989). Developmental test of visual motor integration: administration, scoring, and teaching manual (3rd rev.). Cleveland, OH: Modern Curriculum Press.

    Google Scholar 

  • Beery, K. E. (1996). The Beery-Buktenica developmental test of visual motor integration: administration, scoring, and teaching manual (4th ed.). Cleveland, OH: Modern Curriculum Press.

    Google Scholar 

  • Beery, K. E., & Beery, N. A. (2004). The Beery-Buktenica developmental test of visual motor integration: administration, scoring, and teaching manual (5th ed.). Cleveland, OH: Modern Curriculum Press.

    Google Scholar 

  • Bigler, E. D. (2015). Structural image analysis of the brain in neuropsychology using magnetic resonance imaging (MRI) techniques. Neuropsychology Review, 25(3), 224–249.

    Article  PubMed  Google Scholar 

  • Bigler, E. D., Abildskov, T. J., Wilde, E. A., McCauley, S. R., Li, X., Merkley, T. L., et al. (2010). Diffuse damage in pediatric traumatic brain injury: a comparison of automated versus operator-controlled quantification methods. Neuroimage, 50(3), 1017–1026.

    Article  PubMed  Google Scholar 

  • Bigler, E. D., Tate, D. F., Neeley, E. S., Wolfson, L. J., Miller, M. J., Rice, S. A., & Lainhart, J. E. (2003). Temporal lobe, autism, and macrocephaly. American Journal of Neuroradiology, 24, 2066–2076.

    PubMed  PubMed Central  Google Scholar 

  • Cook, J. From movement kinematics to social cognition: the case of autism. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 2016 ;371(1693). pii: 20150372. doi: https://doi.org/10.1098/rstb.2015.0372.

  • Braddick, O., & Atkinson, J. (2013). Visual control of manual actions: brain mechanisms in typical development and developmental disorders. Developmental Medicine and Child Neurology, 55(Suppl 4), 13–18. https://doi.org/10.1111/dmcn.12300.

    Article  PubMed  Google Scholar 

  • Caeyenberghs, K., Taymans, T., Wilson, P. H., Vanderstraeten, G., Hosseini, H., & van Waelvelde, H. (2016). Neural signature of developmental coordination disorder in the structural connectome independent of comorbid autism. Developmental Science, 19(4), 599–612. https://doi.org/10.1111/desc.12424.

    Article  PubMed  Google Scholar 

  • Castellanos, F. X., & Aoki, Y. (2016). Intrinsic functional connectivity in attention-deficit/hyperactivity disorder: a science in development. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(3), 253–261.

    Google Scholar 

  • Catani, M., & Bambini, V. (2014). A model for social communication and language evolution and development (SCALED). Current Opinion in Neurobiology, 28, 165–171.

    Article  PubMed  Google Scholar 

  • Cheng, Y., Chou, K.-H., Chen, I. Y., Fan, Y.-T., Decety, J., & Lin, C.-P. (2010). Atypical development of white matter microstructure in adolescents with autism spectrum disorders. NeuroImage, 50(3), 873–882.

    Article  PubMed  Google Scholar 

  • Dennis, M., Francis, D. J., Cirino, P. T., Schachar, R., Barnes, M. A., & Fletcher, J. M. (2009). Why IQ is not a covariate in cognitive studies of neurodevelopmental disorders. Journal of the International Neuropsychological Society, 15, 331–343. https://doi.org/10.1017/S1355617709090481.

    Article  PubMed  PubMed Central  Google Scholar 

  • Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Autonomic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53, 1–15.

    Article  PubMed  Google Scholar 

  • Duffield, T. C., Trontel, H. G., Bigler, E. D., Froehlich, A., Prigge, M. B., Travers, B., et al. (2013). Neuropsychological investigation of motor impairments in autism. Journal of Clinical and Experimental Neuropsychology. https://doi.org/10.1080/13803395.2013.827156.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elliott, C. D. (1990). Differential ability scales. San Antonio, TX: The Psychological Corporation.

    Google Scholar 

  • Elsabbagh, M., & Johnson, M. H. (2016). Autism and the social brain: the first-year puzzle. Biological Psychiatry, 80(2), 94–99.

    Article  PubMed  Google Scholar 

  • Geschwind, D. H. (2009). Advances in autism. Annual Review of Medicine. https://doi.org/10.1146/annurev.med.60.053107.121225.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gidley-Larson, J. C., & Mostofsky, S. H. (2008). Evidence that the pattern of visuomotor sequence learning is altered in children with autism. Autism Research, 1(6), 341–353. https://doi.org/10.1002/aur.54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilbert, S. J., Meuwese, J. D. I., Towgood, K. J., Frith, C. D., & Burgess, P. W. (2009). Abnormal functional specialization within medial prefrontal cortex in high-functioning autism: a multi-voxel similarity analysis. Brain: A Journal of Neurology, 132(4), 869–878. https://doi.org/10.1093/brain/awn365.

    Article  Google Scholar 

  • Green, R. R., Bigler, E. D., Froehlich, A., Prigge, M. B., Travers, B. G., Cariello, A. N., et al. (2015). Beery VMI performance in autism spectrum disorder. Child Neuropsychology, 22(7), 795–817.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hannant, P. (2018). Receptive language is associated with visual perception in typically developing children and sensorimotor skills in autism spectrum conditions. Human Movement Science, 58, 297–306. https://doi.org/10.1016/j.humov.2018.03.005.

    Article  PubMed  Google Scholar 

  • Just, M. A., Keller, T. A., Malave, V. L., Kana, R. K., & Varma, S. (2012). Autism as a neural systems disorder: a theory of frontal-posterior underconnectivity. Neuroscience and Biobehavioral Reviews, 36(4), 1292–1313. https://doi.org/10.1016/j.neubiorev.2012.02.007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanner, L. (1943). Autistic disturbances of affective contact. The Nervous Child, 2, 217–250.

    Google Scholar 

  • Kawahara, J., Brown, C. J., Miller, S. P., Booth, B. G., Chau, V., Grunau, R. E., et al. (2016). BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage. https://doi.org/10.1016/j.neuroimage.2016.09.046.

    Article  PubMed  Google Scholar 

  • Keary, C. J., Minshew, N. J., Bansal, R., Goradia, D., Fedorov, S., Keshavan, M. S., & Hardan, A. Y. (2009). Corpus callosum volume and neurocognition in autism. Journal of Autism and Developmental Disorders, 39(6), 834–841. https://doi.org/10.1007/s10803-009-0689-4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stigler, K. A., McDonald, B. C., Anand, A., Saykin, A. J., & McDougle, C. J. (2011). Structural and functional magnetic resonance imaging of autism spectrum disorders. Brain Research, 1380, 146–61. https://doi.org/10.1016/j.brainres.2010.11.076.

    Article  PubMed  Google Scholar 

  • King, J.D., King JB, Prigge MBD, King CK, Morgan J, Dean DC 3rd, Freeman A, Villaruz JAM, Kane KL, Bigler ED, Alexander AL, Lange N, Zielinski BA, Lainhart JE, Anderson JS. (2018). JAMA Netw Open. 2;1(7):e184777. https://doi.org/10.1001/jamanetworkopen.2018.4777.

  • Leisman, G., Braun-Benjamin, O., & Melillo, R. (2015). Cognitive-motor interactions of the basal ganglia in development. Frontiers in Systems Neuroscience. https://doi.org/10.3389/fnsys.2014.00016.

  • Lim, C. Y. Tan, P. C. Koh C. et al. (2015). Beery-Buktenica developmental test of visual-motor integration (Beery-VMI): lessons from exploration of cultural variations in visual-motor integration performance of preschoolers,” Child: Care, Health and Development, 41 (2), 213–221.

  • Lo, Y. C., Chen, Y. J., Hsu, Y. C., Tseng, W. Y. I., & Gau, S. S. F. (2016). Reduced tract integrity of the model for social communication is a neural substrate of social communication deficits in autism spectrum disorder. Journal of Child Psychology and Psychiatry. https://doi.org/10.1111/jcpp.12641.

    Article  PubMed  Google Scholar 

  • Lord, C., Risi, S., Lambrecht, L., Cook, E. H. J., Leventhal, B. L., DiLavore, P. C., & Rutter, M. (2000). The autism diagnostic observation schedule-generic (ADOS-G): a standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30, 205–223.

    Article  PubMed  Google Scholar 

  • Lord, C., Rutter, M., & LeCouteur, A. (1994). Autism diagnostic interview-revised (ADI–R): a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24, 659–685. https://doi.org/10.1007/BF02172145.

    Article  PubMed  Google Scholar 

  • Mevel, K., & Fransson, P. (2016). The functional brain connectome of the child and autism spectrum disorders. Acta Paediatrica, 105(9), 1024–1035. https://doi.org/10.1111/apa.13484.

    Article  PubMed  Google Scholar 

  • Minshew, N. J., Goldstein, G., & Siegel, D. J. (1997). Neuropsychologic functioning in autism: profile of a complex information processing disorder. Journal of the International Neuropsychological Society, 3(4), 303–316.

    Article  PubMed  Google Scholar 

  • Mostofsky, S. H., Powell, S. K., Simmonds, D. J., Goldberg, M. C., Caffo, B., & Pekar, J. J. (2009). Decreased connectivity and cerebellar activity in autism during motor task performance. Brain: A Journal of Neurology, 132(9), 2413–2425. https://doi.org/10.1093/brain/awp088.

    Article  Google Scholar 

  • Mottron, L. (2004). Matching strategies in cognitive research with individuals with high-functioning autism: current practices, instrument biases, and recommendations. Journal of Autism and Developmental Disorders;34(1):19–27.

    Article  PubMed  Google Scholar 

  • Müller, R. A., Kleinhans, N., Kemmotsu, N., Pierce, K., & Courchesne, E. (2003). Abnormal variability and distribution of functional maps in autism: an FMRI study of visuomotor learning. American Journal of Psychiatry, 160(10), 1847–1862.

    Article  Google Scholar 

  • Mutha, P. K., Sainburg, R. L., & Haaland, K. Y. (2011). Left parietal regions are critical for adaptive visuomotor control. The Journal of Neuroscience, 31(19), 6972–6981. https://doi.org/10.1523/JNEUROSCI.6432-10.2011.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nebel, M. B., Eloyan, A., Nettles, C. A., Sweeney, K. L., Ament, K., Ward, R. E., Choe, A. S., Barber, A. D., Pekar, J. J., & Mostofsky, S. H. (2016). Intrinsic visual-motor synchrony correlates with social deficits in autism. Biological Psychiatry, 79(8), 633–641. https://doi.org/10.1016/j.biopsych.2015.08.029.

    Article  PubMed  Google Scholar 

  • Oldehinkel, M., Mennes, M., Marquand, A., et al. (2019). Altered connectivity between cerebellum, visual, and sensory-motor networks in autism spectrum disorder: results from the EU-AIMS Longitudinal European Autism Project. Biol Psychiatry Cogn Neurosci Neuroimaging, 4(3), 260–270. https://doi.org/10.1016/j.bpsc.2018.11.010.

    Article  PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9, 97–113. https://doi.org/10.1016/0028-3932(71)90067-4.

    Article  PubMed  Google Scholar 

  • Prigge, M. B., Lange, N., Bigler, E. D., Merkley, T. L., Neeley, E. S., Abildskov, T. J., et al. (2013). Corpus callosum area in children and adults with autism. Research in Autism Spectrum Disorders, 7(2), 221–234. https://doi.org/10.1016/j.rasd.2012.09.007.

    Article  PubMed  Google Scholar 

  • Sathyanesan, A., Zhou, J., Scafidi, J., Heck, D. H., Sillitoe, R. V., & Gallo, V. (2019). Emerging connections between cerebellar development, behaviour and complex brain disorders. Nature Reviews. Neuroscience, 20(5), 298–313. https://doi.org/10.1038/s41583-019-0152-2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharer, E., Crocetti, D., Muschelli, J., Barber, A. D., Nebel, M. B., Caffo, B. S., Pekar, J. J., & Mostofsky, S. H. (2015). Neural correlates of visuomotor learning in autism. Journal of Child Neurology, 30(14), 1877–1886. https://doi.org/10.1177/0883073815600869.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharer, E. A., Mostofsky, S. H., Pascual-Leone, A., & Oberman, L. M. (2016). Isolating visual and proprioceptive components of motor sequence learning in ASD. Autism Research, 9(5), 563–569. https://doi.org/10.1002/aur.1537PMID.

    Article  PubMed  Google Scholar 

  • Shieh, G., & Jan, S. L. (2015). Optimal sample size allocation for Welch’s test in one-way heteroscedastic ANOVA. Behavior Research Methods, 47(2), 374–383. https://doi.org/10.3758/s13428-014-0477-8.

    Article  PubMed  Google Scholar 

  • Sripada, K., Løhaugen, G. C., Eikenes, L., Bjørlykke, K. M., Håberg, A. K., Skranes, J., & Rimol, L. M. (2015). Visual–motor deficits relate to altered gray and white matter in young adults born preterm with very low birth weight. NeuroImage, 109, 493–504.

    Article  PubMed  Google Scholar 

  • Southwick, J. S., Bigler, E. D., Froehlich, A., DuBray, M. B., Alexander, A. L., Lange, N., & Lainhart, J. E. (2011). Memory functioning in children and adolescents with autism. Neuropsychology, 25(6), 702–710. https://doi.org/10.1037/a0024935.

    Article  PubMed  PubMed Central  Google Scholar 

  • Travers, B. G., Bigler, E. D., Duffield, T. C., Prigge, M. D., Froehlich, A. L., Lange, N., et al. (2016). Longitudinal development of manual motor ability in autism spectrum disorder from childhood to mid-adulthood relates to adaptive daily living skills. Developmental Science. https://doi.org/10.1111/desc.12401.

    Article  Google Scholar 

  • Travers, B. G., Bigler, E. D., Tromp, D. P., Adluru, N., Destiche, D., Samsin, D., et al. (2015). Brainstem white matter predicts individual differences in manual motor difficulties and symptom severity in autism. Journal of Autism and Developmental Disorders, 45(9), 3030–3040.

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner, K. C., Frost, L., Linsenbardt, D., McIlroy, J. R., & Müller, R. A. (2006). Atypically diffuse functional connectivity between caudate nuclei and cerebral cortex in autism. Behavioral and Brain Functions. https://doi.org/10.1186/1744-9081-2-34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Damme, T., Simons, J., Sabbe, B., & van West, D. (2015). Motor abilities of children and adolescents with a psychiatric condition: a systematic literature review. World Journal of Psychiatry, 5(3), 315.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Z., Magnon, G. C., White, S. P., Greene, R. K., Vaillancourt, D. E., & Mosconi, M. W. (2015). Individuals with autism spectrum disorder show abnormalities during initial and subsequent phases of precision gripping. Journal of Neurophysiology, 113(7), 1989–2001. https://doi.org/10.1152/jn.00661.2014.

    Article  PubMed  Google Scholar 

  • Wechsler, D. (1991). Wechsler intelligence scale for children-third edition. San Antonio (TX): The Psychological Corporation.

    Google Scholar 

  • Wechsler, D. (1997). Wechsler adult intelligence scale - Third Edition. San Antonia (TX): The Psychological Corporation.

  • Wechsler, D. (1999). Wechsler abbreviated scale of intelligence. San Antonio (TX): The Psychological Corporation.

    Google Scholar 

  • Wolff, J. J., Gu, H., Gerig, G., Elison, J. T., Styner, M., Gouttard, S., et al. (2012). Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. The American Journal of Psychiatry, 169(6), 589–600. https://doi.org/10.1176/appi.ajp.2011.11091447.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wozniak, J. R., Mueller, B. A., Mattson, S. N., Coles, C. D., Kable, J. A., Jones, K. L., et al. (2016). Functional connectivity abnormalities and associated cognitive deficits in fetal alcohol spectrum disorders (FASD). Brain Imaging and Behavior Epub ahead of print.

    Article  Google Scholar 

  • Zielinski, B. A., Anderson, J. S., Froehlich, A. L., Prigge, M. B., Nielsen, J. A., Cooperrider, J., et al. (2012). scMRI reveals large-scale brain network abnormalities in autism. PLoS One, 7(11). https://doi.org/10.1371/journal.pone.0049172.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the NICHD U19 HD35476 (University of Utah), the NICHD/NIDCD Collaborative Programs of Excellence in Autism (CPEA), the NIH Mental Retardation/Developmental Disabilities Research Center (MRDDRC–Waisman Center), NIMH 62015 (ALA), and NIDA15879 (ALA). The technical assistance of Tracy J. Abildskov is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin D. Bigler.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Green, R.R., Bigler, E.D., Froehlich, A. et al. Beery VMI and Brain Volumetric Relations in Autism Spectrum Disorder. J Pediatr Neuropsychol 5, 77–84 (2019). https://doi.org/10.1007/s40817-019-00069-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40817-019-00069-z

Keywords

Navigation