Skip to main content

Advertisement

Log in

A dynamical study on the adverse effects of industrial activities in the forest and wildlife region through modelling

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

A nonlinear mathematical model is designed and analysed to investigate the impact of forest, non-forest-based industries and their pollutants on forest assets and wildlife population in the forest territory. The pollution from forest and non-forest-based industries is major cause for the depletion of forest resources and wildlife population. In the modelling process, it is assumed that pollutants emitted by both types of industries abate the growth rate of forest resources and wildlife population. However, the forest assets are being depleted by forest-based industries directly. Whether excessive expansion of non-forest-based industries and their pollutants are also major responsible for the loss of ecology between forest resources and wildlife population. The model is expressed in the form of nonlinear dynamical systems considering as different variables and equations. The model is analysed by both ways of method like qualitative and quantitative analysis. Qualitative analysis deduces important results and properties of the model like stability region, finding of equilibriums and their stabilities. However, the model is also analysed by quantitatively to obtained numerical results. It is also deduced that the pollutants which are emitted by non-forest-based industries are more vulnerable to ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayantika Pal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Following are the transformations that can be made:

$$F = F^{ * } + x_{1} ,\,I_{W} = I_{W}^{ * } + x{}_{2},\,I_{N} = I_{N}^{ * } + x_{3} ,\,P = P^{ * } + x_{4} ,\,W = W^{ * } + x_{5} ,$$

with \(x_{1} ,\,x_{2} ,\,x_{3} ,\,x_{4} \,{\text{and}}\,x_{5}\) as minor perturbations around \(E_{3}\), the following positive definite function is considered:

$$V = \frac{1}{2}\left( {\frac{{x_{1}^{2} }}{{F^{ * } }} + l_{1} x_{2}^{2} + l_{2} x_{3}^{2} + l_{3} x_{4}^{2} + l_{4} x_{5}^{2} } \right),$$
(51)

where \(l_{1} ,\,l_{2} ,\,l_{3} \,{\text{and}}\,l_{4}\) are positive constants.

In Eq. (51), we get the derivative of \(V\) with respect to '\(t\)'.

$$\frac{dV}{{dt}} = \frac{{x_{1} }}{{F^{ * } }}\frac{{dx_{1} }}{dt} + l_{1} x_{2} \frac{{dx_{2} }}{dt} + l_{2} x_{3} \frac{{dx_{3} }}{dt} + l_{3} x_{4} \frac{{dx_{4} }}{dt} + l_{4} x_{5} \frac{{dx_{5} }}{dt}$$
(52)
$$\begin{aligned} \frac{dV}{{dt}} & = - (\frac{r}{L} + \beta_{2} I_{N}^{ * } )x_{1}^{2} - l_{1} (c_{1} I_{N}^{ * } + \varphi_{1} - \pi_{1} \beta_{1} F^{ * } )x_{2}^{2} - l_{2} (c_{2} I_{W}^{ * } + \varphi_{2} )x_{3}^{2} - l_{3} (\theta_{3} F^{ * } + \mu_{0} - \pi \alpha_{1} W^{ * } )x_{4}^{2} \hfill \\ & \quad - l_{4} (\delta_{0} W^{ * } + \theta_{0} + \alpha_{1} P^{ * } - \theta \varphi F^{ * } )x_{5}^{2} + ( - \varphi + l_{4} \theta \varphi W^{ * } )x_{1} x_{5} + ( - \beta_{1} + l_{1} \pi_{1} \beta_{1} W^{ * } + l_{1} \pi_{2} I_{N}^{ * } F^{ * } )x_{1} x_{2} \hfill \\ &\quad - \beta_{2} F^{ * } x_{1} x_{3} - (\beta_{3} + l_{3} \theta_{3} P^{ * } )x_{1} x_{4} + (l_{1} \pi_{2} {F^{ * }}^{2} - l_{1} c_{1} I_{W}^{ * } - l_{2} c_{2} I_{N}^{ * } )x_{2} x_{3} + l_{3} \theta_{1} x_{2} x_{4} + l_{3} \theta_{2} x_{3} x_{4} \hfill \\ & \quad + (l_{3} \pi \alpha_{1} P^{ * } - l_{4} \alpha_{1} W^{ * } )x_{4} x_{5} \hfill \\ \end{aligned}$$
(53)

If we choose

\(( - \varphi + l_{4} \theta \varphi W^{ * } )\) = 0, this gives \(l_{4} = \frac{1}{{\theta W^{ * } }}\).

\(( - \beta_{1} + l_{1} \pi_{1} \beta_{1} W^{ * } + l_{1} \pi_{2} I_{N}^{ * } F^{ * } )\) = 0, this gives \(l_{1} = \frac{{\beta_{1} }}{{\pi \beta_{1} W^{ * } + \pi_{2} I_{N}^{ * } F^{ * } }}\).

\((l_{1} \pi_{2} {F^{ * }}^{2} - l_{1} c_{1} I_{W}^{ * } - l_{2} c_{2} I_{N}^{ * } )\) = 0, this gives \(l_{2} = \frac{{\beta_{1} (\pi_{2} {F^{ * }}^{2} - c_{1} I_{W}^{ * } )}}{{c_{2} I_{N}^{ * } (\pi_{1} \beta_{1} I_{W}^{ * } + \pi_{2} F^{ * } I_{N}^{ * } )}}\).

With these, Eq. (53) can be written as

$$\begin{aligned} \frac{dV}{{dt}} & = - (\frac{r}{L} + \beta_{2} I_{N}^{ * } )x_{1}^{2} - l_{1} (c_{1} I_{N}^{ * } + \varphi_{1} - \pi_{1} \beta_{1} F^{ * } )x_{2}^{2} - l_{2} (c_{2} I_{W}^{ * } + \varphi_{2} )x_{3}^{2} - l_{3} (\theta_{3} F^{ * } + \mu_{0} - \pi \alpha_{1} W^{ * } )x_{4}^{2} \hfill \\ & \quad - l_{4} (\delta_{0} W^{ * } + \theta_{0} + \alpha_{1} P^{ * } - \theta \varphi F^{ * } )x_{5}^{2} - \beta_{2} F^{ * } x_{1} x_{3} - (\beta_{3} + l_{3} \theta_{3} P^{ * } )x_{1} x_{4} + l_{3} \theta_{1} x_{2} x_{4} \hfill \\ & \quad + l_{3} \theta_{2} x_{3} x_{4} + (l_{3} \pi \alpha_{1} P^{ * } - l_{4} \alpha_{1} W^{ * } )x_{4} x_{5} \hfill \\ \end{aligned}$$
(54)

If we choose \(l_{3} = 1\), we have.

Now,\(\frac{dV}{{dt}}\) will be negative if.

  1. (i)

    \(( - \beta_{2} F^{ * } )^{2} < \frac{{l_{2} }}{4}(\frac{r}{L} + \beta_{2} I_{N}^{ * } )(c_{2} I_{W}^{ * } + \varphi_{2} )\)which can be written as

    $$4c_{2} I_{N}^{ * } (\pi_{1} \beta_{1} I_{W}^{ * } + \pi_{2} F^{ * } I_{N}^{ * } )(\beta_{2} F^{ * } )^{2} < (\frac{r}{L} + \beta_{2} I_{N}^{ * } )(c_{2} I_{W}^{ * } + \varphi_{2} )\beta_{1} (\pi_{2} {F^{ * }}^{2} - c_{1} I_{W}^{ * } )(c_{2} I_{W}^{ * } + \varphi_{2} )$$
  2. (ii)

    \((\beta_{3} + l_{3} \theta_{3} P^{ * } )^{2} < \frac{{l_{3} }}{8}(\frac{r}{L} + \beta_{2} I_{N}^{ * } )(\theta_{3} F^{ * } + \mu_{0} - \pi \alpha_{1} W^{ * } )\)which can be written as

    $$8(\beta_{3} + \theta_{3} P^{ * } )^{2} < (\frac{r}{L} + \beta_{2} I_{N}^{ * } )(\theta_{3} F^{ * } + \mu_{0} - \pi \alpha_{1} W^{ * } )$$
  3. (iii)

    \((l_{3} \theta_{1} )^{2} < \frac{{l_{1} l_{3} }}{4}(c_{1} I_{N}^{ * } + \varphi_{1} - \pi_{1} \beta_{1} F^{ * } )(\theta_{3} F^{ * } + \mu_{0} - \pi \alpha_{1} W^{ * } )\)which can be written as

    $$4(\pi_{1} \beta_{1} I_{W}^{ * } + \pi_{2} F^{ * } I_{N}^{ * } )\theta_{1}^{2} < \beta_{1} (c_{1} I_{N}^{ * } + \varphi_{1} - \pi_{1} \beta_{1} F^{ * } )(\theta_{3} F^{ * } + \mu_{0} - \pi \alpha_{1} W^{ * } )$$
  4. (iv)

    \((l_{3} \theta_{2} )^{2} < \frac{{l_{2} l_{3} }}{8}(c_{2} I_{W}^{ * } + \varphi_{2} )(\theta_{3} F^{ * } + \mu_{0} - \pi \alpha_{1} W^{ * } )\)which can be written as

    $$8(\pi_{1} \beta_{1} I_{W}^{ * } + \pi_{2} F^{ * } I_{N}^{ * } )c_{2} I_{N}^{ * } \theta_{2}^{2} < \beta_{1} (\pi_{2} {F^{ * }}^{2} - c_{1} I_{W}^{ * } )(c_{2} I_{W}^{ * } + \varphi_{2} )(\theta_{3} F^{ * } + \mu_{0} - \pi \alpha_{1} W^{ * } )$$
  5. (v)

    \((l_{3} \pi \alpha_{1} P^{ * } - l_{4} \alpha_{1} W^{ * } ) < \frac{{l_{3} l_{4} }}{4}(\theta_{3} F^{ * } + \mu_{0} - \pi \alpha_{1} W^{ * } )(\delta_{0} W^{ * } + \theta_{0} + \alpha_{1} P^{ * } - \theta \varphi F^{ * } )\)

    which can be written as

    $$4\theta W^{ * } (\pi \alpha_{1} P^{ * } - \frac{{\alpha_{1} }}{\theta })^{2} < (\theta_{3} F^{ * } + \mu_{0} - \pi \alpha_{1} W^{ * } )(\delta_{0} W^{ * } + \theta_{0} + \alpha_{1} P^{ * } - \theta \varphi F^{ * } ).$$

Appendix B

$$U = \left( {F - F^{ * } - F^{ * } \ln \frac{F}{{F^{ * } }}} \right) + \frac{1}{2}m_{1} (I_{W} - I_{W}^{ * } )^{2} + \frac{1}{2}m_{2} (I_{N} - I_{N}^{ * } )^{2} + \frac{1}{2}m_{3} (P - P^{ * } )^{2} + \frac{1}{2}m_{4} (W - W^{ * } )^{2} ,$$
(55)

where \(m_{1} ,\,m_{2} ,\,m_{3} \,{\text{and}}\,m_{4}\) are positive constants.

In Eq. (55), we get the derivative of \(U\) with respect to '\(t\)'.

$$\begin{aligned} \frac{dU}{{dt}} & = \frac{{(F - F^{ * } )}}{F}\frac{dF}{{dt}} + m_{1} (I_{W} - I_{W}^{ * } )\frac{{dI_{W} }}{dt} + m_{2} (I_{N} - I_{N}^{ * } )\frac{{dI_{N} }}{dt} + m_{3} (P - P^{ * } )\frac{dP}{{dt}} + m_{4} (W - W^{ * } )\frac{dW}{{dt}} \hfill \\ \frac{dU}{{dt}} & = - \frac{r}{L}(F - F^{ * } )^{2} - m_{1} (c_{1} I_{N} + \varphi_{1} - \pi_{1} \beta_{1} F)(I_{W} - I_{W}^{ * } )^{2} - m_{2} (c_{2} I_{W} + \varphi_{2} )(I_{N} - I_{N}^{ * } )^{2} \hfill \\ & \quad - m_{3} (\theta_{3} F + \mu_{0} - \pi \alpha_{1} W)(P - P^{ * } )^{2} - m_{4} (\delta_{0} W + \theta_{0} + \alpha_{1} P - \theta \varphi F)(W - W^{ * } )^{2} \hfill \\ & \quad+ ( - \varphi + m_{4} \theta \varphi W^{ * } )(F - F^{ * } )(W - W^{ * } ) + ( - \beta_{3} - m{}_{3}\theta_{3} P^{ * } )(F - F^{ * } )(P - P^{ * } ) \hfill \\ & \quad + ( - \beta_{1} + m_{1} \pi_{1} \beta_{1} I_{W}^{ * } + m_{1} \pi_{2} I_{N}^{ * } F^{ * } )(F - F^{ * } )(I_{W} - I_{W}^{ * } ) - \beta_{2} F^{ * } (F - F^{ * } )(I_{N} - I_{N}^{ * } ) \hfill \\ & + (m_{1} \pi_{2} {F^{ * }}^{2} - c_{1} m_{1} I_{W}^{ * } - m_{2} c_{2} I_{N}^{ * } )(I_{W} - I_{W}^{ * } )(I_{N} - I_{N}^{ * } ) + m_{3} \theta_{1} (P - P^{ * } )(I_{W} - I_{W}^{ * } ) \hfill \\ & \quad+ m_{3} \theta_{2} (P - P^{ * } )(I_{N} - I_{N}^{ * } ) + (m_{3} \pi \alpha_{1} P^{ * } - m_{4} \alpha_{1} W^{ * } )(W - W^{ * } )(P - P^{ * } ) \hfill \\ \end{aligned}$$
(56)

If we choose

\(( - \varphi + m_{4} \theta \varphi W^{ * } )\) = 0, this gives \(m_{4} = \frac{1}{{\theta W^{ * } }}\).

\(( - \beta_{1} + m_{1} \pi_{1} \beta_{1} W^{ * } + m_{1} \pi_{2} I_{N}^{ * } F^{ * } )\) = 0, this gives \(m_{1} = \frac{{\beta_{1} }}{{\pi \beta_{1} W^{ * } + \pi_{2} I_{N}^{ * } F^{ * } }}\).

\((m_{1} \pi_{2} {F^{ * }}^{2} - m_{1} c_{1} I_{W}^{ * } - m_{2} c_{2} I_{N}^{ * } )\) = 0, this gives \(m_{2} = \frac{{\beta_{1} (\pi_{2} {F^{ * }}^{2} - c_{1} I_{W}^{ * } )}}{{c_{2} I_{N}^{ * } (\pi_{1} \beta_{1} I_{W}^{ * } + \pi_{2} F^{ * } I_{N}^{ * } )}}\).

If we choose \(m_{3} = 1\), we have

Now,\(\frac{dU}{{dt}}\) will be negative if

  1. (i)

    \(( - \beta_{2} F^{ * } )^{2} < \frac{{m_{2} }}{4}(\frac{r}{L} + \beta_{2} I_{N}^{ * } )(c_{2} I_{W}^{ * } + \varphi_{2} )\)which can be written as

    $$4c_{2} I_{N}^{ * } (\pi_{1} \beta_{1} I_{W}^{ * } + \pi_{2} F^{ * } I_{N}^{ * } )(\beta_{2} F^{ * } )^{2} < (\frac{r}{L} + \beta_{2} I_{N}^{ * } )(c_{2} I_{W}^{ * } + \varphi_{2} )\beta_{1} (\pi_{2} {F^{ * }}^{2} - c_{1} I_{W}^{ * } )(c_{2} I_{W}^{ * } + \varphi_{2} )$$
  2. (ii)

    \((\beta_{3} + m_{3} \theta_{3} P^{ * } )^{2} < \frac{{m_{3} }}{8}(\frac{r}{L} + \beta_{2} I_{N}^{ * } )(\theta_{3} F^{ * } + \mu_{0} - \pi \alpha_{1} W^{ * } )\)which can be written as

    $$8(\beta_{3} + \theta_{3} P^{ * } )^{2} < (\frac{r}{L} + \beta_{2} I_{N}^{ * } )(\theta_{3} F^{ * } + \mu_{0} - \pi \alpha_{1} W^{ * } )$$
  3. (iii)

    \((m_{3} \theta_{1} )^{2} < \frac{{m_{1} m_{3} }}{4}(c_{1} I_{N}^{ * } + \varphi_{1} - \pi_{1} \beta_{1} F^{ * } )(\theta_{3} F^{ * } + \mu_{0} - \pi \alpha_{1} W^{ * } )\)which can be written as

    $$4(\pi_{1} \beta_{1} I_{W}^{ * } + \pi_{2} F^{ * } I_{N}^{ * } )\theta_{1}^{2} < \beta_{1} (c_{1} I_{N}^{ * } + \varphi_{1} - \pi_{1} \beta_{1} F^{ * } )(\theta_{3} F^{ * } + \mu_{0} - \pi \alpha_{1} W^{ * } )$$
  4. (iv)

    \((m_{3} \theta_{2} )^{2} < \frac{{m_{2} m_{3} }}{8}(c_{2} I_{W}^{ * } + \varphi_{2} )(\theta_{3} F^{ * } + \mu_{0} - \pi \alpha_{1} W^{ * } )\)which can be written as

    $$8(\pi_{1} \beta_{1} I_{W}^{ * } + \pi_{2} F^{ * } I_{N}^{ * } )c_{2} I_{N}^{ * } \theta_{2}^{2} < \beta_{1} (\pi_{2} {F^{ * }}^{2} - c_{1} I_{W}^{ * } )(c_{2} I_{W}^{ * } + \varphi_{2} )(\theta_{3} F^{ * } + \mu_{0} - \pi \alpha_{1} W^{ * } )$$
  5. (v)

    \((m_{3} \pi \alpha_{1} P^{ * } - m_{4} \alpha_{1} W^{ * } ) < \frac{{m_{3} m_{4} }}{4}(\theta_{3} F^{ * } + \mu_{0} - \pi \alpha_{1} W^{ * } )(\delta_{0} W^{ * } + \theta_{0} + \alpha_{1} P^{ * } - \theta \varphi F^{ * } )\)

    which can be written as

    $$4\theta W^{ * } (\pi \alpha_{1} P^{ * } - \frac{{\alpha_{1} }}{\theta })^{2} < (\theta_{3} F^{ * } + \mu_{0} - \pi \alpha_{1} W^{ * } )(\delta_{0} W^{ * } + \theta_{0} + \alpha_{1} P^{ * } - \theta \varphi F^{ * } ).$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, S.K., Pal, J. & Jyotsna, K. A dynamical study on the adverse effects of industrial activities in the forest and wildlife region through modelling. Model. Earth Syst. Environ. 9, 2053–2065 (2023). https://doi.org/10.1007/s40808-022-01581-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-022-01581-6

Keywords

Navigation