Skip to main content
Log in

An Application of Extreme Value Theory for Measuring Financial Risk in BRICS Economies

  • Published:
Annals of Data Science Aims and scope Submit manuscript

Abstract

Characterization and quantification of the tail behaviour of rare events is an important issue in financial risk management. In this paper, the extreme behaviour of stock market returns from BRICS over the period 1995–2015 is described using five parametric distributions based on extreme value theory, including two mixture distributions based on the student’s t distribution. The distributions are fitted to the data using the method of maximum likelihood. The generalized extreme value (GEV) distribution is found to give the best fit. Based on the GEV distribution, estimates of value at risk, \({\hbox {VaR}}_{p}(X)\) and expected shortfall, \({\hbox {ES}}_{p}(X)\) from the five countries are computed. In addition, the correlation structure and tail dependence of these markets are characterized using several copula models. The Gumbel copula gives the best fit with evidence of significant relationships for all the pairs of the markets. To account for the possibility that due to sampling variability, a different model might be selected as the preferred model in a new sample from the same population, a short bootstrapping exercise was performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adu G, Alagidede P, Karimu A (2015) Stock return distribution in the BRICS. Rev Dev Finance 5:98–109

    Article  Google Scholar 

  2. Afuecheta E, Chan S, Nadarajah S (2019) Flexible models for stock returns based on Student’s \(t\) distribution. Manch Sch 87(3):403–427

    Article  Google Scholar 

  3. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  4. Aloui R, Aïssa MSB, Nguyen DK (2011) Global financial crisis, extreme interdependences, and contagion effects: the role of economic structure? J Bank Finance 35:130–141

    Article  Google Scholar 

  5. Anderson TW, Darling DA (1954) A test of goodness of fit. J Am Stat Assoc 49:765–769

    Article  Google Scholar 

  6. Bartels R (1982) The rank version of von Neumanns ratio test for randomness. J Am Stat Assoc 77:40–46

    Article  Google Scholar 

  7. Beirlant J, Teugels JL, Vynckier P (1996) Practical analysis of extreme values. Leuven University Press, Leuven

    Google Scholar 

  8. Bozdogan H (1987) Model selection and Akaikes Information Criterion (AIC): the general theory and its analytical extensions. Psychometrika 52:345–370

    Article  Google Scholar 

  9. Breusch TS, Pagan AR (1979) A simple test for heteroscedasticity and random coefficient variation. Econometrica 47:1287–1294

    Article  Google Scholar 

  10. Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304

    Article  Google Scholar 

  11. Carvalho M, Rua A (2014) Extremal dependence in international output growth: tales from the tails. Oxf Bull Econ Stat 76:605–620

    Article  Google Scholar 

  12. Choi Y, Gwak W, Goo H, Ahn JY (2014) Statistical estimation of extreme values in the mixture distributions. J Risk Manag 25:31–56

    Article  Google Scholar 

  13. Cox DR, Stuart A (1955) Some quick sign test for trend in location and dispersion. Biometrika 42:80–95

    Article  Google Scholar 

  14. Cramer H (1928) On the composition of elementary errors. Scand Actuarial J 1928:13–74

    Article  Google Scholar 

  15. Dahir AM, Mahat F, Razak NH, Bany-Ariffin AN (2017) Revisiting the dynamic relationship between exchange rates and stock prices in BRICS countries: a wavelet analysis. Borsa Istanb Rev. https://doi.org/10.1016/j.bir.2017.10.001 (in press)

    Article  Google Scholar 

  16. Danielson J, De Vries CG (2000) Value at risk and extreme returns. Annales DECONOMIE ET DE STATISTIQUE, No 60

  17. Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge University Press, Cambridge

    Book  Google Scholar 

  18. Durbin J, Watson GS (1950) Testing for serial correlation in least squares regression I. Biometrika 37:409–428

    Google Scholar 

  19. Durbin J, Watson GS (1951) Testing for serial correlation in least squares regression II. Biometrika 38:159–178

    Article  Google Scholar 

  20. Durbin J, Watson GS (1971) Testing for serial correlation in least squares regression III. Biometrika 58:1–19

    Google Scholar 

  21. Efron B (1979) Bootstrap methods: another look at the jacknife. Ann Stat 7(1):1–26

    Article  Google Scholar 

  22. Efron B, Tibshirani RJ (1994) An introduction to the bootstrap. Chapman & Hall, New York

    Book  Google Scholar 

  23. Embrechts P, Klüppelberg C, Mikosch T (1997) Modelling extremal events for insurance and finance. Springer-Verlag, Berlin

    Book  Google Scholar 

  24. Embrechts P, Resnick SI, Samorodnitsky G (1998) Living on the Edge. Risk 11:96–100

    Google Scholar 

  25. Embrechts P, Mcneil A, Straumann D (1999) Correlation: pitfalls and alternatives. Risk 12:69–71

    Google Scholar 

  26. Gençay R, Selçuk F (2004) Extreme value theory and value-at-risk: relative performance in emerging markets. Int J Forecast 20(2):287–303

    Article  Google Scholar 

  27. Genest C, Boies J-C (2003) Detecting dependence with Kendall plots. Am Stat 57:275–284

    Article  Google Scholar 

  28. Genest C, Favre AC (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12(4):347–368

    Article  Google Scholar 

  29. Gettinby GD, Sinclair CD, Power DM, Brown RA (2006) An analysis of the distribution of extremes in indices of share returns in the US, UK and Japan from 1963 to 2000. Int J Finance Econ 11:97–113

    Article  Google Scholar 

  30. Gwak W, Goo H, Choi YH, Ahn JY (2016) Extreme value theory in mixture distributions and a statistical method to control the possible bias. J Korean Stat Soc 45:581–594

    Article  Google Scholar 

  31. Fang Y (2011) Asymptotic equivalence between cross-validations and Akaike Information Criteria in mixed-effects models. J Data Sci 9:15–21

    Google Scholar 

  32. Farmer REA (2015) The stock market crash really did cause the great recession. Oxf Bull Econ Stat 77:617–633

    Article  Google Scholar 

  33. Hannan EJ, Quinn BG (1979) The determination of the order of an autoregression. J R Stat Soc B 41:190–195

    Google Scholar 

  34. Harold B (2008) The 1929 Stock Market Crash. EH. Net Encyclopedia, edited by Robert Whaples, http://eh.net/encyclopedia/article/Bierman.Crash. Accessed 19 Dec 2019

  35. Hassani H, Huang X, Ghodsi M (2018) Big data and causality. Ann Data Sci 5:133–156

    Article  Google Scholar 

  36. He H, Chen S, Yao S, Ou J (2014) Financial liberalisation and international market interdependence: evidence from Chinas stock market in the post-WTO accession period. J Int Financ Mark Inst Money 33:434–444

    Article  Google Scholar 

  37. Hurvich CM, Tsai C-L (1989) Regression and time series model selection in small samples. Biometrika 76:297–307

    Article  Google Scholar 

  38. Jarque CM, Bera AK (1980) Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Econ Lett 6:255–259

    Article  Google Scholar 

  39. John B (1969) Once in Golconda: a true drama of wall street 1920-1938. Harper and Row, New York (ISBN 0-393-01375-8)

    Google Scholar 

  40. Idrisov G, Kazakova M, Polbin A (2015) A theoretical interpretation of the oil prices impact on economic growth in contemporary Russia. Russ J Econ 1:257–272

    Article  Google Scholar 

  41. İzgi B, Duran A (2016) 3D extreme value analysis for stock return, interest rate and speed of mean reversion. J Comput Appl Math 297:51–64

    Article  Google Scholar 

  42. Jondeau E, Poon S, Rockinger M (2007) Financial modeling under non-gaussian distributions. Springer-Verlag, London

    Google Scholar 

  43. Kaplan PD (2009) The history and economics of stock markets crashes. In: Quantitative Research, Morning Star, EU

  44. Karimi M, Voia M (2015) Identifying extreme values of exchange market pressure. Empir Econ 48:1055

    Article  Google Scholar 

  45. Karmakar M, Shukla GK (2015) Managing extreme risk in some major stock markets: an extreme value approach. Int Rev Econ Finance 35:1–25

    Article  Google Scholar 

  46. Kenourgios D, Samitas A, Paltalidis N (2011) Financial crises and stock market contagion in a multivariate time-varying asymmetric framework. J Int Financ Mark Inst Money 21:92–106

    Article  Google Scholar 

  47. Kolmogorov A (1933) Sulla determinazione empirica di una legge di distribuzione. Giornale dellstituto Italiano degli Attuari 4:83–91

    Google Scholar 

  48. Kotz S, Nadarajah S (2000) Extreme value distributions: theory and applications. Imperial College Press, London

    Book  Google Scholar 

  49. Koutsoyiannis D, Baloutsos G (2000) Analysis of a long record of annual maximum rainfall in Athens, Greece, and design rainfall inferences. Nat Hazards 22:29–48

    Article  Google Scholar 

  50. Leadbetter MR, Lindgren G, Rootzen H (1983) Extremes and related properties of random sequences and processes. Springer-Verlag, New York

    Book  Google Scholar 

  51. Li H (2012) The impact of China’s stock market reforms on its international stock market linkages. Q Rev Econ Finance 52:358–68

    Article  Google Scholar 

  52. Lilliefors HW (1967) On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J Am Stat Assoc 62:399–402

    Article  Google Scholar 

  53. Longin FM (1996) The asymptotic distribution of extreme stock market returns. J Bus 69:383–408

    Article  Google Scholar 

  54. Longin FM (2000) From value at risk to stress testing: the extreme value approach. J Bank Finance 24:1097–1130

    Article  Google Scholar 

  55. Longin F, Pagliardi G (2016) Tail relation between return and volume in the US stock market: an analysis based on extreme value theory. Econ Lett 145:252–254

    Article  Google Scholar 

  56. Lux T (2000) On moment condition failure in German stock returns: an application of recent advances in extreme value statistics. Empir Econ 25:641

    Article  Google Scholar 

  57. MacKinnon JB (2006) Bootstrap methods in econometrics. Econ Rec 82(s1):S2–S18

    Article  Google Scholar 

  58. McNeil A (1998) On extremes and crashes. Risk 11:99

    Google Scholar 

  59. McNeil AJ, Frey R (2000) Estimation of tail-related risk measures for heteroscedasticity financial time series: An extreme value approach. J Empir Finance 7:271–300

    Article  Google Scholar 

  60. Morazán P, Knoke I, Knoblauch D, Schä T (2012) The role of BRICS in the developing world. European Parliament (Directorate-General for External policies), EXPO/B/DEVE/FWC/2009/01/lot5/24

  61. Muela SB, Martín CL, Sanz RA (2017) An application of extreme value theory in estimating liquidity risk European Research on Management and Business. Economics 23(3):157–164

    Google Scholar 

  62. Nadarajah S (2005) Extremes of daily rainfall in west central Florida. Clim Change 69:325–342

    Article  Google Scholar 

  63. Olson D, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York

    Google Scholar 

  64. O’Neill J (2001) Building better global economic BRICs. Global Economics Paper No. 66. Goldman Sachs & Co

  65. Park JS, Jung HS, Kim RS, Oh JH (2001) Modelling summer extreme rainfall over the Korean peninsula using Wakeby distribution. Int J Climatol 21:1371–1384

    Article  Google Scholar 

  66. Parkinson M (1980) The extreme value method for estimating the variance of the rate of returns. J Bus 53:61–65

    Article  Google Scholar 

  67. Pickands J (1975) Statistical inference using extreme order statistics. Ann Stat 3:119–131

    Google Scholar 

  68. Qin X, Zhu X (2014) Too non-traditional to fail? Determinants of systemic risk for BRICs banks. Appl Econ Lett 21:261–264

    Article  Google Scholar 

  69. Reiss R-D, Thomas M (1997) Statistical analysis of extreme values with applications to insurance, finance, hydrology and other fields. Birkhäuser, Basel

    Google Scholar 

  70. Resnick SI (2008) Extreme values, regular variation, and point processes. Springer, New York

    Google Scholar 

  71. Sabitova N, Shavaleyeva C (2015) Oil and gas revenues of the Russian Federation: trends and prospects. Proc Econ Finance 27:423–428

    Article  Google Scholar 

  72. Saini A, Sharma A (2019) Predicting the unpredictable: an application of machine learning algorithms in Indian Stock Market. Ann Data Sci. https://doi.org/10.1007/s40745-019-00230-7

    Article  Google Scholar 

  73. Schwarz GE (1978) Estimating the dimension of a model. Ann stat 6:461–464

    Article  Google Scholar 

  74. Shao J, Tu D (1995) The jacknife and bootstrap. Springer, New York

    Book  Google Scholar 

  75. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3 & 4):591–611

    Article  Google Scholar 

  76. Shapiro SS, Francia RS (1972) An approximate analysis of variance test for normality. J Am Stat Assoc 67:215–216

    Article  Google Scholar 

  77. Shi Y, Tian YJ, Kou G, Peng Y, Li JP (2011) Optimization based data mining: theory and applications. Springer, Berlin

    Book  Google Scholar 

  78. Shi Y (2014) Big Data: History, Current Status, and Challenges Going Forward, The Bridge, The US National Academy of Engineering, Vol. 44(4), Winter 2014, pp 6-11

  79. Shi Y, Shan Z, Li J et al (2017) How China deals with big data. Ann Data Sci 4:433–440

    Article  Google Scholar 

  80. Singh AK, Allen DE, Robert PJ (2013) Extreme market risk and extreme value theory. Math Comput Simul 94:310–328

    Article  Google Scholar 

  81. Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de l’Université de Paris 8:229–231

    Google Scholar 

  82. Tolikas K, Brown RA (2006) The distribution of the extreme daily share returns in the Athens stock exchange. Eur J Finance 12(1):1–22

    Article  Google Scholar 

  83. Tolikas M (2011) The rare event risk in African emerging stock markets. Manag Finance 37:275–294

    Google Scholar 

  84. Vilasuso J, Katz D (2000) Estimates of the likelihood of extreme returns in international stock markets. J Appl Stat 27:119–130

    Article  Google Scholar 

  85. Visalakshmi S, Lakshmi P (2012) BRICS market nexus for cross listed stocks: a VECX* framework. J Finance Data Sci 2:76–88

    Article  Google Scholar 

  86. Mises Von, Richard E (1928) Wahrscheinlichkeit, Statistik und Wahrheit. Julius Springer, Heidelberg

    Book  Google Scholar 

  87. Wang Q, Ma Y, Zhao K et al (2020) A comprehensive survey of loss functions in machine learning. Ann Data Sci. https://doi.org/10.1007/s40745-020-00253-5

    Article  Google Scholar 

  88. Wang Z, Wu W, Chen C, Zhou Y (2010) The exchange rate risk of Chinese yuan: using VaR and ES based on extreme value theory. J Apppl Stat 37:265–282

    Article  Google Scholar 

  89. Wing JPC, Gonpot PN (2015) Risk model validation for BRICS countries: a value-at-risk, expected shortfall and extreme value theory approach. J Rish Val 9:1–22

    Google Scholar 

  90. Withers CS, Nadarajah S (2000) Evidence of trend in return levels for daily rainfall in New Zealand. J Hydrol (NZ) 39:155–166

    Google Scholar 

  91. Wright EM (1935) The asymptotic expansion of the generalized hypergeometric function. J London Math Soc 10:286–293

    Article  Google Scholar 

  92. Xu Z, Shi Y (2015) Exploring big data analysis: fundamental scientific problems. Ann Data Sci 2:363–372

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Editor and the two referees for careful reading and comments which greatly improved the paper. Also we would like to thank Artur Semeyutin for helping the first author with the bootstrapping part when his computer was broken.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Afuecheta.

Ethics declarations

Conflict of Interest

The authors declare that there is no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afuecheta, E., Utazi, C., Ranganai, E. et al. An Application of Extreme Value Theory for Measuring Financial Risk in BRICS Economies. Ann. Data. Sci. 10, 251–290 (2023). https://doi.org/10.1007/s40745-020-00294-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40745-020-00294-w

Keywords

JEL Classification

Navigation