Skip to main content
Log in

Cubic Transmuted Weibull Distribution: Properties and Applications

  • Published:
Annals of Data Science Aims and scope Submit manuscript

Abstract

In this paper, a cubic transmuted Weibull (\( CTW \)) distribution has been proposed by using the general family of transmuted distributions introduced by Rahman et al. (Pak J Stat Oper Res 14:451–469, 2018). We have explored the proposed \( CTW \) distribution in details and have studied its statistical properties as well. The parameter estimation and inference procedure for the proposed distribution have been discussed. We have conducted a simulation study to observe the performance of estimation technique. Finally, we have considered two real-life data sets to investigate the practicality of proposed \( CTW \) distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rahman MM, Al-Zahrani B, Shahbaz MQ (2018) A general transmuted family of distributions. Pak J Stat Oper Res 14:451–469

    Article  Google Scholar 

  2. Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297

    Google Scholar 

  3. Mudholkar GS, Srirastava DK, Kollia GD (1996) A generalization of the Weibull distribution with application to analysis of survival data. J Am Stat Assoc 91:1575–1583

    Article  Google Scholar 

  4. Pham H, Lai C-D (2007) On recent generalizations of the Weibull distribution. IEEE Trans Reliab 56:454–458

    Article  Google Scholar 

  5. Xie M, Tang Y, Goh TN (2002) A modified Weibull extension with bathtub shaped failure rate function. Reliab Eng Syst Saf 76:279–285

    Article  Google Scholar 

  6. Lai CD, Xie M, Murthy DNP (2003) A modified Weibull distribution. IEEE Trans Reliab 52:33–37

    Article  Google Scholar 

  7. Nassar MM, Eissa FH (2003) On the exponentiated Weibull distribution. Commun Stat Theory Methods 32:1317–1336

    Article  Google Scholar 

  8. Pal M, Ali MM, Woo J (2006) Exponentiated Weibull distribution. Statistica 66:139–147

    Google Scholar 

  9. Jiang R, Murthy DNP (2001) Models involving two inverse Weibull distributions. Reliab Eng Syst Saf 73:73–81

    Article  Google Scholar 

  10. Aryal GR, Tsokos CP (2011) Transmuted Weibull distribution: a generalization of the Weibull probability distribution. Eur J Pure Appl Math 4:89–102

    Google Scholar 

  11. Shaw WT, Buckley IRC (2007) The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map. Research report

  12. Granzotto DCT, Louzada F, Balakrishnan N (2017) Cubic rank transmuted distributions: inferential issues and applications. J Stat Comput Simul 87:2760–2778

    Article  Google Scholar 

  13. Al-Kadim KA, Mohammed MH (2017) The cubic transmuted Weibull distribution. J Univ Babylon 3:862–876

    Google Scholar 

  14. Gradshteyn IS, Ryzhik IM (2007) Table of integrals, series, and products. Elsevier, New York

    Google Scholar 

  15. Owoloko EA, Oguntunde PE, Adejumo AO (2015) Performance rating of the transmuted exponential distribution: an analytical approach. Springer Plus 4:8–18

    Article  Google Scholar 

  16. Rahman MM, Al-Zahrani B, Shahbaz MQ (2018) Cubic transmuted pareto distribution. Data Sci, Ann. https://doi.org/10.1007/s40745-018-0178-8

    Book  Google Scholar 

  17. Zaindin M, Sarhan AM (2009) Parameters estimation of the modified Weibull distribution. Appl Math Sci 3:541–550

    Google Scholar 

  18. Nichols MD, Padgett WJ (2006) A bootstrap control chart for Weibull percentiles. Qual Reliab Eng 22:141–151

    Article  Google Scholar 

  19. Choulakian V, Stephens MA (2001) Goodness-of-fit for the generalized Pareto distribution. Technometrics 43:478–484

    Article  Google Scholar 

  20. Akinsete A, Famoye F, Lee C (2008) The beta-Pareto distribution. Statistics 6:547–563

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Qaiser Shahbaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: The Hessian Matrix for the \( CTW \) Distribution

Appendix 1: The Hessian Matrix for the \( CTW \) Distribution

The Hessian matrix is given as

$$ H = \left( {\begin{array}{*{20}c} {H_{11} } & {H_{12} } & {H_{13} } & {H_{14} } \\ {H_{21} } & {H_{22} } & {H_{23} } & {H_{24} } \\ {H_{31} } & {H_{32} } & {H_{33} } & {H_{34} } \\ {H_{41} } & {H_{42} } & {H_{43} } & {H_{44} } \\ \end{array} } \right), $$

where the variance–covariance matrix \( V \) is obtained by

$$ V = \left( {\begin{array}{*{20}c} {V_{11} } & {V_{12} } & {V_{13} } & {V_{14} } \\ {V_{21} } & {V_{22} } & {V_{23} } & {V_{24} } \\ {V_{31} } & {V_{32} } & {V_{33} } & {V_{34} } \\ {V_{41} } & {V_{42} } & {V_{43} } & {V_{44} } \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} {H_{11} } & {H_{12} } & {H_{13} } & {H_{14} } \\ {H_{21} } & {H_{22} } & {H_{23} } & {H_{24} } \\ {H_{31} } & {H_{32} } & {H_{33} } & {H_{34} } \\ {H_{41} } & {H_{42} } & {H_{43} } & {H_{44} } \\ \end{array} } \right)^{ - 1} , $$

with the elements

$$ \begin{aligned} H_{11} & = - \frac{{\delta^{2} l}}{{\delta \lambda^{2} }} = 3\sum\limits_{i = 1}^{n} {\left( {\frac{{\left( {k - 1} \right)kx_{i}^{2} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k - 2} }}{{\lambda^{4} }} + \frac{{2kx_{i} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k - 1} }}{{\lambda^{3} }}} \right)} - \frac{kn}{{\lambda^{2} }} \\ & \quad + \sum\limits_{i = 1}^{n} {\left[ {\frac{{\left\{ { - \frac{{2k\beta_{1} x_{i} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} }}{{\lambda^{2} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{1 - k} }} - \frac{{2k\beta_{2} x_{i} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} }}{{\lambda^{2} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{1 - k} }} + 2e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} + e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} } \right\}^{2} }}{{\left\{ {\beta_{1} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} + 2\beta_{2} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} - 3\lambda_{2} } \right\}^{2} }}} \right.} \\ & \quad - \frac{1}{{\beta_{1} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} + 2\beta_{2} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} - 3\lambda_{2} }}\left\{ {\frac{{4k^{2} \beta_{1} x_{i}^{2} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{2k - 2} }}{{\lambda^{4} }}} \right. \\ & \quad + \frac{{2k^{2} \beta_{2} x_{i}^{2} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{2k - 2} }}{{\lambda^{4} }} + \frac{{2(k - 1)k\beta_{1} x_{i}^{2} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k - 2} }}{{\lambda^{4} }} \\ & \quad + \frac{{2(k - 1)k\beta_{2} x_{i}^{2} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k - 2} }}{{\lambda^{4} }} + \frac{{4k\beta_{1} x_{i} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k - 1} }}{{\lambda^{3} }} \\ & \quad + \frac{{4k\beta_{2} x_{i} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k - 1} }}{{\lambda^{3} }} - \frac{{4kx_{i} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k - 1} }}{{\lambda^{2} }} \\ & \quad \left. {\left. { - \frac{{4kx_{i} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k - 1} }}{{\lambda^{2} }} + 2e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} + e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} } \right\}} \right], \\ \end{aligned} $$
$$ \begin{aligned} H_{12} & = - \frac{{\delta^{2} l}}{\delta \lambda \cdot \delta k} = 3\sum\limits_{i = 1}^{n} {\left\{ { - \frac{{x_{i} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k - 1} }}{{\lambda^{2} }} - \frac{{kx_{i} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k - 1} \log \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)}}{{\lambda^{2} }}} \right\}} + \frac{n}{\lambda } \\ & \quad + \sum\limits_{i = 1}^{n} {\left[ {\left( {\beta_{1} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} + 2\beta_{2} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} - 3\lambda_{2} } \right)^{ - 2} \left\{ {\left\{ { - \frac{{2k\beta_{1} x_{i} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k - 1} }}{{\lambda^{2} }}} \right.} \right.} \right.} \\ & \quad \left. { - \frac{{2k\beta_{2} x_{i} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} }}{{\lambda^{2} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{1 - k} }} + 2e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} + e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} } \right\}\left\{ {2\beta_{1} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} \log \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)} \right. \\& \quad \left. {\left. {+\,2\beta_{2} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} \log \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)} \right\}} \right\} - \frac{1}{{\beta_{1} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} + 2\beta_{2} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} - 3\lambda_{2} }} \\ & \quad \times \left\{ { - \frac{{2\beta_{1} x_{i} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k - 1} }}{{\lambda^{2} }} - \frac{{2\beta_{2} x_{i} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k - 1} }}{{\lambda^{2} }}} \right. \\ & \quad - \frac{{2k\beta_{1} x_{i} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k - 1} \log \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)}}{{\lambda^{2} }} - \frac{{2k\beta_{2} x_{i} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k - 1} \log \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)}}{{\lambda^{2} }} \\ & \quad - \frac{{4k\beta_{1} x_{i} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{2k - 1} \log \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)}}{{\lambda^{2} }} - \frac{{2k\beta_{2} x_{i} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{2k - 1} \log \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)}}{{\lambda^{2} }} \\ & \quad \left. {\left. { +\, 2e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} \log \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right) + 2e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} \log \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)} \right\}} \right], \\ \end{aligned} $$
$$ \begin{aligned} H_{13} & = - \frac{{\delta^{2} l}}{{\delta \lambda \cdot \delta \lambda_{1} }} = - \sum\limits_{i = 1}^{n} {\left[ {\frac{{2kx_{i} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k - 1} - 2kx_{i} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k - 1} }}{{\lambda^{2} \left( {\beta_{1} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} + 2\beta_{2} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} - 3\lambda_{2} } \right)}}} \right.} \\ & \quad - \left\{ {\beta_{1} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} + 2\beta_{2} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} - 3\lambda_{2} } \right\}^{ - 2} \left\{ {\left\{ {2e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} } \right. - e\left. {^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} } \right\}} \right. \\& \quad \left. {\left. { \times \left\{ { - \frac{{2k\beta_{1} x_{i} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} }}{{\lambda^{2} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{1 - k} }}} \right.\left. { - \frac{{2k\beta_{2} x_{i} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} }}{{\lambda^{2} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{1 - k} }} + 2e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} + e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} } \right\}} \right\}} \right], \\ \end{aligned} $$
$$ \begin{aligned} H_{14} & = - \frac{{\delta^{2} l}}{{\delta \lambda \cdot \delta \lambda_{2} }} = - \sum\limits_{i = 1}^{n} {\left[ {\frac{{2kx_{i} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k - 1} - 4kx_{i} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k - 1} }}{{\lambda^{2} \left( {\beta_{1} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} + 2\beta_{2} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} - 3\lambda_{2} } \right)}}} \right.} \\ & \quad - \left( {\beta_{1} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} + 2\beta_{2} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} - 3\lambda_{2} } \right)^{ - 2} \left\{ {\left\{ {4e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} } \right. - e\left. {^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} - 3} \right\}} \right. \\ & \quad \times \left. {\left. {\left\{ { - \frac{{2k\beta_{1} x_{i} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} }}{{\lambda^{2} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{1 - k} }}} \right. - \left. {\frac{{2k\beta_{2} x_{i} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} }}{{\lambda^{2} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{1 - k} }} + 2e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} + e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} } \right\}} \right\}} \right], \\ \end{aligned} $$
$$ \begin{aligned} H_{{22}} & = - \frac{{\delta ^{2} l}}{{\delta k^{2} }} = 3\sum\limits_{{i = 1}}^{n} {\left( {\frac{{x_{i} }}{\lambda }} \right)^{k} } \log ^{2} \left( {\frac{{x_{i} }}{\lambda }} \right) + \frac{n}{{k^{2} }} \\ & \quad + \sum\limits_{{i = 1}}^{n} {\left[ {\frac{1}{{\beta _{1} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} + 2\beta _{2} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} - 3\lambda _{2} }}\left\{ {2\beta _{1} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} \log ^{2} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)} \right.} \right.} \\ & \quad + 2\beta _{2} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} \left( {\frac{{x_{i} }}{\lambda }} \right)^{k} \log ^{2} \left( {\frac{{x_{i} }}{\lambda }} \right) + 4\beta _{1} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} \left( {\frac{{x_{i} }}{\lambda }} \right)^{{2k}} \log ^{2} \left( {\frac{{x_{i} }}{\lambda }} \right) \\ & \quad \left. { + 2\beta _{2} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} \left( {\frac{{x_{i} }}{\lambda }} \right)^{{2k}} \log ^{2} \left( {\frac{{x_{i} }}{\lambda }} \right)} \right\} - \left\{ {\beta _{1} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} + 2\beta _{2} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} - 3\lambda _{2} } \right\}^{{ - 2}} \\ & \quad \times \left. {\left\{ {2\beta _{1} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} \left( {\frac{{x_{i} }}{\lambda }} \right)^{k} \log \left( {\frac{{x_{i} }}{\lambda }} \right) + 2\beta _{2} e\left. {^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} \left( {\frac{{x_{i} }}{\lambda }} \right)^{k} \log \left( {\frac{{x_{i} }}{\lambda }} \right)} \right\}} \right\}^{2} } \right], \\ \end{aligned} $$
$$ \begin{aligned} H_{{23}} & = - \frac{{\delta ^{2} l}}{{\delta k \cdot \delta \lambda _{1} }} = - \sum\limits_{{i = 1}}^{n} {\left[ {\frac{{2e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} \log \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right) - 2e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} \log \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)}}{{\left( { - \lambda _{1} - \lambda _{2} + 1} \right)e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} + 2\left( {\lambda _{1} + 2\lambda _{2} } \right)e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} - 3\lambda _{2} }}} \right.} \\ & \quad - \left. {\frac{{\left\{ {\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} \log \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)} \right\}\left\{ {2e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} - e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} } \right\}\left\{ {2\beta _{1} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} + 2\beta _{2} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} } \right\}}}{{\left\{ {\beta _{1} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} + 2\beta _{2} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} - 3\lambda _{2} } \right\}^{2} }}} \right], \\ \end{aligned}$$
$$ \begin{aligned} H_{{24}} = - \frac{{\delta ^{2} l}}{{\delta k \cdot \delta \lambda _{2} }} & = - \sum\limits_{{i = 1}}^{n} {\left[ {\frac{{4e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} \log \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right) - 2e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} \log \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)}}{{\beta _{1} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} + 2\beta _{2} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} - 3\lambda _{2} }}} \right.} \\ & \quad - \left. {\frac{{\left\{ {\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} \log \left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)} \right\}\left\{ {4e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} - e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} - 3} \right\}\left\{ {2\beta _{1} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} + 2\beta _{2} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} } \right\}}}{{\left\{ {\beta _{1} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} + 2\beta _{2} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{k} }} - 3\lambda _{2} } \right\}^{2} }}} \right], \\ \end{aligned}$$
$$ H_{33} = - \frac{{\delta^{2} l}}{{\delta \lambda_{1}^{2} }} = \sum\limits_{i = 1}^{n} {\left\{ {2e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} - e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} } \right\}^{2} \left\{ {\beta_{1} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} + 2\beta_{2} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} - 3\lambda_{2} } \right\}^{ - 2} } , $$
$$ H_{34} = - \frac{{\delta^{2} l}}{{\delta \lambda_{1} \cdot \delta \lambda_{2} }} = \sum\limits_{i = 1}^{n} {\frac{{\left\{ {2e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} - e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} } \right\}\left\{ {4e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} - e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} - 3} \right\}}}{{\left\{ {\beta_{1} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} + 2\beta_{2} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} - 3\lambda_{2} } \right\}^{2} }}} , $$
$$ H_{44} = - \frac{{\delta^{2} l}}{{\delta \lambda_{2}^{2} }} = \sum\limits_{i = 1}^{n} {\left\{ {4e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} - e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} - 3} \right\}^{2} \left\{ {\beta_{1} e^{{2\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} + 2\beta_{2} e^{{\left( {{{x_{i} } \mathord{\left/ {\vphantom {{x_{i} } \lambda }} \right. \kern-0pt} \lambda }} \right)^{k} }} - 3\lambda_{2} } \right\}^{ - 2} } , $$

where \( \beta_{1} = \left( {1 - \lambda_{1} - \lambda_{2} } \right) \) and \( \beta_{2} = \left( {\lambda_{1} + 2\lambda_{2} } \right) \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.M., Al-Zahrani, B. & Shahbaz, M.Q. Cubic Transmuted Weibull Distribution: Properties and Applications. Ann. Data. Sci. 6, 83–102 (2019). https://doi.org/10.1007/s40745-018-00188-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40745-018-00188-y

Keywords

Navigation