Skip to main content

Advertisement

Log in

Stakeholders’ Perspectives of Species Diversity in Tree Plantations: a Global Review

  • Climate Change and Carbon Sequestration (O Campoe, Section Editor)
  • Published:
Current Forestry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Increasing the diversity of commercial tree plantations is a promising approach to adapt forests to climate change, but it may complicate management. Here, we evaluate stakeholders’ perspectives about tree-species diversity in plantations and explore policy alternatives to make mixed plantations a viable strategy for climate change mitigation and adaptation.

Recent Findings

Current evidence shows that improving the diversity of tree species in plantations can be a viable, scalable, and economically accessible strategy for sustainable wood production and reconciling economic and environmental benefits. Tree diversity is particularly important in the context of global environmental changes and associated increases in abiotic and biotic stresses, such as severe droughts and pest outbreaks. Even though there is substantial scientific evidence supporting mixed-tree plantations, most forest plantations globally are still conventional monocultures.

Summary

Our findings (i) describe the geographical distribution of publications investigating human perspectives about forest plantation diversity; (ii) build understanding of how political engagement and governance systems can support forest initiatives on forest conservation, management, and restoration; and (iii) demonstrate how these perspectives can create possibilities and opportunities for sustainable development in forestry. We conclude that new strategies will only be widely applied if there is political and institutional interest, particularly in strengthening land-governance systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, et al. A large and persistent carbon sink in the world’s forests Science. American Association for the Advancement of Science. 2011;333:988–93. https://doi.org/10.1126/science.1201609.

    Article  CAS  Google Scholar 

  2. Bastin J-F, Finegold Y, Garcia C, Mollicone D, Rezende M, Routh D, et al. The global tree restoration potential. Science. 2019;366:76–9. https://doi.org/10.1126/science.aax0848.

    Article  CAS  Google Scholar 

  3. Minnemeyer S, Laestadius L, Sizer N, Saint-Laurent C Potapov P. A world of opportunity. 2011. Washington, D.C.,World Resources Institute. Available at: www.wri.org/restoringforests. Accessed 07 Apr 2022

  4. ITTO. Guidelines for the restoration, management and rehabilitation of degraded and secondary tropical forests. IUCN Libr. Syst. 2002;1–88. https://portals.iucn.org/library/node/8197. Accessed 11 Apr 2022

  5. Strassburg BBN, Iribarrem A, Beyer HL, Cordeiro CL, Crouzeilles R, Jakovac CC, et al. Global priority areas for ecosystem restoration. Nature. 2020;586:724–9. https://doi.org/10.1038/s41586-020-2784-9.

    Article  CAS  Google Scholar 

  6. Brancalion PHS, Niamir A, Broadbent E, Crouzeilles R, Barros FSM, Almeyda Zambrano AM, et al. Global restoration opportunities in tropical rainforest landscapes. Sci Adv. 2019;5:1–12.

    Article  Google Scholar 

  7. Sewell A, Esch S Van Der, Lowenhardt H. Goals and commitments for the restoration decade. PBL Policy Br. 2020. https://www.pbl.nl/sites/default/files/downloads/pbl-2020-goals-and-commitments-for-the-restoration-decade-3906.pdf. Accessed 10 Apr 2022

  8. Brancalion PHS, Holl KD. Guidance for successful tree planting initiatives. J Appl Ecol Blackwell Publishing Ltd. 2020;57:2349–61. https://doi.org/10.1111/1365-2664.13725.

    Article  Google Scholar 

  9. Fagan ME, Leighton Reid J, Holland MB, Drew JG, Zahawi RA, Matthew Fagan HE. How feasible are global forest restoration commitments? Conserv Lett. 2020;13:e12700. https://doi.org/10.1111/conl.12700.

    Article  Google Scholar 

  10. Lewis SL, Wheele CE, Mitchard ETA, Koch A. Regenerate natural forests to store carbon. Nature. 2019;568:25–8. https://www.nature.com/articles/d41586-019-01026-8. Accessed 17 Apr 2022

  11. Hua F, Adrian Bruijnzeel L, Meli P, Martin PA, Zhang J, Nakagawa S, et al. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science. American Association for the Advancement of Science. 2022;376:839–44. https://doi.org/10.1126/science.abl4649.

    Article  CAS  Google Scholar 

  12. Nguyen H, Herbohn J, Lamb D, Clendenning J, Meadows J. A synthesis of the available evidence to guide the design of mixed-species forest plantings for smallholder and community forestry. Small-scale For. 2018;17:105–23. https://doi.org/10.1007/s11842-017-9378-x.

    Article  Google Scholar 

  13. Nambiar EKS. Small forest growers in tropical landscapes should be embraced as partners for green-growth: increase wood supply, restore land, reduce poverty, and mitigate climate change. Trees for People. 2021;6:100154. https://doi.org/10.1016/j.tfp.2021.100154. (Elsevier).

    Article  Google Scholar 

  14. Erskine PD, Lamb D, Bristow M. Tree species diversity and ecosystem function: can tropical multi-species plantations generate greater productivity? For Ecol Manage Elsevier. 2006;233:205–10. https://doi.org/10.1016/j.foreco.2006.05.013.

    Article  Google Scholar 

  15. Alem S, Pavlis J, Urban J, Kucera J, Alem S, Pavlis J, et al. Pure and mixed plantations of Eucalyptus camaldulensis and Cupressus lusitanica: their growth interactions and effect on diversity and density of undergrowth woody plants in relation to light. Open J For. 2015; 5:375–386. http://www.scirp.org/Html/6-1620269_55406.htm

  16. Pirard R, Dal Secco L, Warman R. Do timber plantations contribute to forest conservation? Environ Sci Policy Elsevier. 2016;57:122–30. https://doi.org/10.1016/j.envsci.2015.12.010.

    Article  Google Scholar 

  17. Messier C, Bauhus J, Sousa-Silva R, Auge H, Baeten L, Barsoum N, et al. For the sake of resilience and multifunctionality, let’s diversify planted forests! Conserv Lett. 2022;15:e12829. https://doi.org/10.1111/conl.12829.

    Article  Google Scholar 

  18. Felton A, Lindbladh M, Brunet J, Fritz Ö. Replacing coniferous monocultures with mixed-species production stands: an assessment of the potential benefits for forest biodiversity in northern Europe. For Ecol Manage Elsevier. 2010;260:939–47. https://doi.org/10.1016/j.foreco.2010.06.011.

    Article  Google Scholar 

  19. Gómez-gonzález S, Ojeda F, Fernandes PM. Portugal and Chile : longing for sustainable forestry while rising from the ashes. Environ Sci Policy Elsevier. 2018;81:104–7. https://doi.org/10.1016/j.envsci.2017.11.006.

    Article  Google Scholar 

  20. Colchester M, Boscolo M, Contreras-Hermosilla, Gatto AF Del, Dempsey J, Lescuyer G, et al. Justice in the forest: rural livelihoods and forest law enforcement. Cent. Int. For. Res. 2006:98. https://doi.org/10.17528/cifor/001939

  21. Englund O, Börjesson P, Mola-Yudego B, Berndes G, Dimitriou I, Cederberg C, et al. Strategic deployment of riparian buffers and windbreaks in Europe can co-deliver biomass and environmental benefits. Commun Earth Environ. 2021;2:1–18. https://doi.org/10.1038/s43247-021-00247-y.

    Article  Google Scholar 

  22. Pretzsch H. Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For Ecol Manage Elsevier. 2014;327:251–64. https://doi.org/10.1016/j.foreco.2014.04.027.

    Article  Google Scholar 

  23. Neuner S, Albrecht A, Cullmann D, Engels F, Griess Vc, Hahn Wa, et al. Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate. Glob Chang Biol. 2014;21:935–46. https://doi.org/10.1111/gcb.12751.

    Article  Google Scholar 

  24. Grossman JJ, Vanhellemont M, Barsoum N, Bauhus J, Bruelheide H, Castagneyrol B, et al. Synthesis and future research directions linking tree diversity to growth, survival, and damage in a global network of tree diversity experiments. Environ Exp Bot. 2018;152:68–89. https://doi.org/10.1016/j.envexpbot.2017.12.015.

    Article  Google Scholar 

  25. Jactel H, Bauhus J, Boberg J, Bonal D, Castagneyrol B, Gardiner B, et al. Tree diversity drives forest stand resistance to natural disturbances. Curr For Reports. 2017;3:223–43. https://doi.org/10.1007/s40725-017-0064-1.

    Article  Google Scholar 

  26. Paquette A, Hector A, Castagneyrol B, Vanhellemont M, Koricheva J, Scherer-Lorenzen M, et al. A million and more trees for science. Nat Ecol Evol. 2018;2:763–6. https://doi.org/10.1038/s41559-018-0544-0.

    Article  Google Scholar 

  27. Morin X, Fahse L, de Mazancourt C, Scherer-Lorenzen M, Bugmann H. Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics. Ecol Lett. John Wiley & Sons, Ltd. 2014;17:1526–35. https://doi.org/10.1111/ele.12357.

    Article  Google Scholar 

  28. Jucker T, Bouriaud O, Avacaritei D, Coomes DA. Stabilizing effects of diversity on aboveground wood production in forest ecosystems: linking patterns and processes. Ecol Lett. 2014;17:1560–9. https://doi.org/10.1111/ele.12382.

    Article  Google Scholar 

  29. Verheyen K, Vanhellemont M, Auge H, Baeten L, Baraloto C, Barsoum N, et al. Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio. 2016;45:29–41. https://doi.org/10.1007/s13280-015-0685-1.

    Article  CAS  Google Scholar 

  30. Baeten L, Bruelheide H, van der Plas F, Kambach S, Ratcliffe S, Jucker T, et al. Identifying the tree species compositions that maximize ecosystem functioning in European forests. J Appl Ecol. 2019;56:733–44. https://doi.org/10.1111/1365-2664.13308.

    Article  Google Scholar 

  31. Weih M, Nordh NE, Manzoni S, Hoeber S. Functional traits of individual varieties as determinants of growth and nitrogen use patterns in mixed stands of willow (Salix spp.). For Ecol Manage. 2021;479:118605. https://doi.org/10.1016/j.foreco.2020.118605. (Elsevier).

    Article  Google Scholar 

  32. Forrester DI, Albrecht AT. Light absorption and light-use efficiency in mixtures of Abies alba and Picea abies along a productivity gradient. For Ecol Manage Elsevier. 2014;328:94–102.

    Google Scholar 

  33. Metz J, Annighöfer P, Schall P, Zimmermann J, Kahl T, Schulze E-D, et al. Site-adapted admixed tree species reduce drought susceptibility of mature European beech. Glob Chang Biol. 2015;22:903–20. https://doi.org/10.1111/gcb.13113.

    Article  Google Scholar 

  34. Bolte A, Rahmann T, Kuhr M, Pogoda P, Murach D, Gadow KV. Relationships between tree dimension and coarse root biomass in mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies [L.] Karst.). Plant Soil. 2004;264:1–11. https://doi.org/10.1023/B:PLSO.0000047777.23344.a3.

    Article  CAS  Google Scholar 

  35. Coll L, Ameztegui A, Collet C, Löf M, Mason B, Pach M, et al. Knowledge gaps about mixed forests: what do European forest managers want to know and what answers can science provide? For Ecol Manage. 2018;407:106–15. https://doi.org/10.1016/j.foreco.2017.10.055.

    Article  Google Scholar 

  36. Baltodano, J. Pago De servicios ambientales para reconstrucción ecosistémica, fortalecimiento de organizaciones locales y desarrollo rural. Rev de Cienc Ambientales. 2000;18:21–30. https://doi.org/10.15359/rca.18-1.3

  37. Stephens SS, Wagner MR. Forest plantations and biodiversity: a fresh perspective. J Forest. 2007;105:307–13. https://doi.org/10.1093/jof/105.6.307.

    Article  Google Scholar 

  38. Nichols JD, Bristow M, Vanclay JK. Mixed-species plantations: prospects and challenges. For Ecol Manage. 2006;233:383–90. https://doi.org/10.1016/j.foreco.2006.07.018.

    Article  Google Scholar 

  39. Koskela T, Karppinen H. Forest owners’ willingness to implement measures to safeguard biodiversity: values, attitudes, ecological worldview and forest ownership objectives. Small-scale For. 2021;20:11–37. https://doi.org/10.1007/s11842-020-09454-5.

    Article  Google Scholar 

  40. Jepson P, Arakelyan I. Exploring public perceptions of solutions to tree diseases in the UK: implications for policy-makers. Environ Sci Policy. 2017;76:70–7. https://doi.org/10.1016/j.envsci.2017.06.008.

    Article  Google Scholar 

  41. Butler BJ, Hewes JH, Dickinson BJ, Andrejczyk K, Butler SM, Markowski-Lindsay M. USDA forest service national woodland owner survey, 2011–2013: design, implementation, and estimation. United States Department of Agriculture. 2016. https://www.fs.usda.gov/nrs/pubs/gtr/gtr_nrs157.pdf. Accessed 10 May 2022

  42. Willis JL, Gordon JS, Tanger S, Blazier MA, Self AB, Brodbeck A. Managing mixed stands: reassessing a forgotten stand type in the Southeastern United States. Forests. 2019;10:1–16. https://doi.org/10.3390/f10090751.

    Article  Google Scholar 

  43. FAO. Global forest resources assessment. Food Agric. Organ. United Nations. Roma; 2020. https://doi.org/10.4060/ca8753en

  44. Moebius-Clune BN, van Es HM, Idowu OJ, Schindelbeck RR, Kimetu JM, Ngoze S, et al. Long-term soil quality degradation along a cultivation chronosequence in western Kenya. Agric Ecosyst Environ Elsevier. 2011;141:86–99. https://doi.org/10.1016/j.agee.2011.02.018.

    Article  CAS  Google Scholar 

  45. Cook-Patton SC, Leavitt SM, Gibbs D, Harris NL, Lister K, Anderson-Teixeira KJ, et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature. 2020;585:545–50. https://doi.org/10.1038/s41586-020-2686-x.

    Article  CAS  Google Scholar 

  46. Jindal R, Swallow B, Kerr J. Forestry-based carbon sequestration projects in Africa : potential benefits and challenges. Nat Resour Forum. 2008;32:116–30. https://doi.org/10.1111/j.1477-8947.2008.00176.x.

    Article  Google Scholar 

  47. Nabuurs G, Delacote P, Ellison D, Hanewinkel M, Lindner M, Nesbit M, et al. A new role for forests and the forest sector in the EU post-2020 climate targets. From Science to Policy 2. European Forest Institute. 2015. https://doi.org/10.36333/fs02.

  48. Sloan S, Sayer JA. Forest Resources Assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. For Ecol Manage. 2015;352:134–45. https://doi.org/10.1016/j.foreco.2015.06.013. (Elsevier B.V.).

    Article  Google Scholar 

  49. D’Amato D, Rekola M, Wan M, Cai D, Toppinen A. Effects of industrial plantations on ecosystem services and livelihoods: perspectives of rural communities in China. Land Use Policy. 2017;63:266–78. https://doi.org/10.1016/j.landusepol.2017.01.044.

    Article  Google Scholar 

  50. Bowditch EAD, McMorran R, Bryce R, Smith M. Perception and partnership: developing forest resilience on private estates. For Policy Econ. 2019;99:110–22. https://doi.org/10.1016/j.forpol.2017.12.004. (Elsevier B.V.).

    Article  Google Scholar 

  51. De Valck J, Vlaeminck P, Broekx S, Liekens I, Aertsens J, Chen W, et al. Benefits of clearing forest plantations to restore nature? Evidence from a discrete choice experiment in Flanders. Belgium Landsc Urban Plan Elsevier. 2014;125:65–75. https://doi.org/10.1016/j.landurbplan.2014.02.006.

    Article  Google Scholar 

  52. Sinu PA, Kent SM, Chandrashekara K. Forest resource use and perception of farmers on conservation of a usufruct forest (Soppinabetta) of Western Ghats. India Land use policy. 2012;29:702–9. https://doi.org/10.1016/j.landusepol.2011.11.006.

    Article  Google Scholar 

  53. Scheidel A, Work C. Forest plantations and climate change discourses: new powers of ‘green’ grabbing in Cambodia. Land use policy Pergamon. 2018;77:9–18. https://doi.org/10.1016/j.landusepol.2018.04.057.

    Article  Google Scholar 

  54. Schweizer D, Meli P, Brancalion PHS, Guariguata MR. Implementing forest landscape restoration in Latin America: stakeholder perceptions on legal frameworks. Land use policy. 2021;104:104244. https://doi.org/10.1016/j.landusepol.2019.104244.

    Article  Google Scholar 

  55. Anderson NM, Williams KJH, Ford RM. Community perceptions of plantation forestry: the association between place meanings and social representations of a contentious rural land use. J Environ Psychol. 2013;34:121–36. https://doi.org/10.1016/j.jenvp.2013.02.001.

    Article  Google Scholar 

  56. Schweizer D, van Kuijk M, Ghazoul J. Perceptions from non-governmental actors on forest and landscape restoration, challenges and strategies for successful implementation across Asia, Africa and Latin America. J Environ Manage. 2021;286:112251. https://doi.org/10.1016/j.jenvman.2021.112251.

    Article  Google Scholar 

  57. Williams KJH, Schirmer J. Understanding the relationship between social change and its impacts: the experience of rural land use change in south-eastern Australia. J Rural Stud. 2012;28:538–48. https://doi.org/10.1016/j.jrurstud.2012.05.002.

    Article  Google Scholar 

  58. Owusu V, Ma W, Emuah D, Renwick A. Perceptions and vulnerability of farming households to climate change in three agro-ecological zones of Ghana. J Clean Prod.. 2021;293. https://doi.org/10.1016/j.jclepro.2021.293:126154 Elsevier.

  59. Grilli G, Jonkisz J, Ciolli M, Lesinski J. Mixed forests and ecosystem services: Investigating stakeholders’ perceptions in a case study in the Polish Carpathians. For Policy Econ Elsevier. 2016;66:11–7. https://doi.org/10.1016/j.forpol.2016.02.003.

    Article  Google Scholar 

  60. Abram NK, Meijaard E, Ancrenaz M, Runting RK, Wells JA, Gaveau D, et al. Spatially explicit perceptions of ecosystem services and land cover change in forested regions of Borneo. Ecosyst Serv. 2014;7:116–27. https://doi.org/10.1016/j.ecoser.2013.11.004.

    Article  Google Scholar 

  61. Carnol M, Baeten L, Branquart E, Grégoire JC, Heughebaert A, Muys B, et al. Ecosystem services of mixed species forest stands and monocultures: comparing practitioners and scientists perceptions with formal scientific knowledge. Forestry Oxford University Press. 2014;87:639–53. https://doi.org/10.1093/forestry/cpu024.

    Article  Google Scholar 

  62. Nichols JD, Carpenter FL. Interplanting Inga edulis yields nitrogen benefits to Terminalia amazonia. For Ecol Manage. 2006;233:344–51. https://doi.org/10.1016/j.foreco.2006.05.031.

    Article  Google Scholar 

  63. Feng Y, Schmid B, Loreau M, Forrester DI, Fei S, Zhu J, et al. Multispecies forest plantations outyield monocultures across a broad range of conditions. Science. 2022;376:865–8. https://doi.org/10.1126/science.abm6363.

    Article  CAS  Google Scholar 

  64. Evans J and Turnbull JW. Plantation forestry in the tropics. 3rd ed. Oxford University Press; 2004. https://www.cabdirect.org/cabdirect/abstract/20056704537. Accessed 09 May 2022

  65. Chazdon RL, Brancalion PHS, Laestadius L, Bennett-Curry A, Buckingham K, Kumar C, et al. When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio. 2016;45:538–50. https://doi.org/10.1007/s13280-016-0772-y.

    Article  Google Scholar 

  66. Holl KD, Brancalion PHS. Which of the plethora of tree-growing projects to support? One Earth Cell Press. 2022;5:452–5. https://doi.org/10.1016/j.oneear.2022.04.001.

    Article  Google Scholar 

  67. Crouzeilles R, Maurenza D, Prieto PV, Barros FSM, Jakovac C, Ferreira MS, et al. Associations between socio-environmental factors and landscape-scale biodiversity recovery in naturally regenerating tropical and subtropical forests. Conserv Lett. 2021;14:e12768. https://doi.org/10.1111/conl.12768.

    Article  Google Scholar 

  68. Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner HO, Roberts DC, et al. Climate Change and Land. IPCC. Special report on climate change and land - summary for policymakers. 2019. https://www.ipcc.ch/srccl/chapter/summary-for-policymakers/. Accessed 08 May 2022

  69. United Nations - Department of Economic and Social Affairs. Do you know all 17 SDGs? 2022.. https://sdgs.un.org/goals. Accessed 20 July 2022

  70. Rey Benayas JM, Newton AC, Diaz A, Bullock JM. Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science. 2009;325:1121–4. https://doi.org/10.1126/science.1172460.

    Article  CAS  Google Scholar 

  71. Moreno-Mateos D, Barbier EB, Jones PC, Jones HP, Aronson J, López-López JA, et al. Anthropogenic ecosystem disturbance and the recovery debt. Nat Commun. Nat Commun; 2017;8. https://doi.org/10.1038/ncomms14163

  72. Luo Y, Chen HYH. Observations from old forests underestimate climate change effects on tree mortality. Nat Commun Nature Publishing Group. 2013;4:1–6. https://doi.org/10.1038/ncomms2681.

    Article  CAS  Google Scholar 

  73. Gustavsson L, Haus S, Lundblad M, Lundström A, Ortiz CA, Sathre R, et al. Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels. Renew Sustain Energy Rev. 2017;67:612–24. https://doi.org/10.1016/j.rser.2016.09.056.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Kamilla Alves da Silva for preparing the graphic design of the paper’s figures and Dr. Carl Salk for reviewing the text.

Funding

This research was funded through the 2019–2020 BiodivERsA joint call for research proposals, under the BiodivClim ERA-Net COFUND program (MixForChange project), with funding from ANR (ANR-20-EBI5-0003), BELSPO, DFG, FAPESP (processes numbers: 2019/24318–6 and 2021/14062–4), FWF and the Swedish Research Council FORMAS (project number 2020–02339).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia Bulascoschi Cagnoni.

Ethics declarations

Conflict of Interest

Dr. Pedro H. S. Brancalion is a co-founder of the company Re.green and a member of its scientific advisory board, and has received research funding from Eucalyptus-production companies to develop cost-effective approaches to restore tropical forests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cagnoni, L.B., Weidlich, E.W.A., Guillemot, J. et al. Stakeholders’ Perspectives of Species Diversity in Tree Plantations: a Global Review. Curr. For. Rep. 9, 251–262 (2023). https://doi.org/10.1007/s40725-023-00194-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40725-023-00194-1

Keywords

Navigation