Skip to main content
Log in

Stability for quantitative photoacoustic tomography revisited

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

This paper deals with the issue of stability in determining the absorption and the diffusion coefficients in quantitative photoacoustic imaging. We establish a global conditional Hölder stability inequality from the knowledge of two internal data obtained from optical waves, generated by two point sources in a region where the optical coefficients are known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alessandrini, G., Di Cristo, M., Francini, E., Vessella, S.: Stability for quantitative photoacoustic tomography with well chosen illuminations. Ann. Mat. Pura e Appl. 196(2), 395–406 (2017)

    Article  MathSciNet  Google Scholar 

  2. Ammari, H., Bossy, E., Jugnon, V., Kang, H.: Mathematical modeling in photoacoustic imaging of small absorbers. SIAM Rev. 52, 677–695 (2010)

    Article  MathSciNet  Google Scholar 

  3. Ammari, H., Garnier, J., Kang, H., Nguyen, L., Seppecher, L.: Multi-Wave Medical Imaging, Modeling and Simulation in Medical Imaging. World Scientific, London (2017)

    Book  Google Scholar 

  4. Ammari, H., Kang, H., Kim, S.: Sharp estimates for the Neumann functions and applications to quantitative photo-acoustic imaging in inhomogeneous media. J. Differ. Equ. 253(1), 41–72 (2012)

    Article  MathSciNet  Google Scholar 

  5. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, vol. 55. Courier Corporation, Massachusetts (1965)

    MATH  Google Scholar 

  6. Auscher, P., Tchamitchian, P.H.: Square root problem for divergence operators and related topics. Astérisque 249, viii+172 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Bal, G., Ren, K.: Multi-source quantitative photoacoustic tomography in a diffusive regime. Inverse Probl. 27(7), 075003 (2011)

    Article  MathSciNet  Google Scholar 

  8. Bal, G., Uhlmann, G.: Inverse diffusion theory of photoacoustics. Inverse Prob. 26, 085010 (2010)

    Article  MathSciNet  Google Scholar 

  9. Bellassoued, M., Choulli, M.: Global logarithmic stability of a Cauchy problem for anisotropic wave equations (2019). arXiv:1902.05878

  10. Choulli, M.: Boundary Value Problems for Elliptic Partial Differential Equations, Graduate Course. arXiv:1912.05497

  11. Choulli, M.: Some stability inequalities for hybrid inverse problems. CR. Math. Acad. Sci. Paris 359(10), 1251–1265 (2021)

    MATH  Google Scholar 

  12. Cox, B.T., Laufer, J.G., Beard, P.C., Arridge, S.R.: Quantitative spectroscopic photoacoustic imaging: a review. J. Biomed. Opt. 17(6), 061202 (2012)

    Article  Google Scholar 

  13. Fabes, E., Stroock, D.W.: A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash. Arch. Rat. Mech. Anal. 96, 327–338 (1986)

    Article  MathSciNet  Google Scholar 

  14. Friedman, A.: Partial Differential Equations of Parabolic Type, p. xiv+347. Prentice-Hall Inc, Englewood Cliffs, N.J. (1964)

    Google Scholar 

  15. Garofalo, N., Lin, F.-H.: Monotonicity properties of variational integrals, \(A_p\) weights and unique continuation. Indiana Univ. Math. J. 35(2), 245–268 (1986)

    Article  MathSciNet  Google Scholar 

  16. Garofalo, N., Lin, F.-H.: Unique continuation for elliptic operators: a geometric-variational approach. Commun. Pure Appl. Math. 40(3), 347–366 (1987)

    Article  MathSciNet  Google Scholar 

  17. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer-Verlag, Berlin (1983)

    MATH  Google Scholar 

  18. Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics 24, p. xiv+410. Pitman (Advanced Publishing Program), Boston, MA (1985)

    Google Scholar 

  19. Kukavica, I.: Quantitative uniqueness for second-order elliptic operators. Duke Math. J. 91(2), 225–240 (1998)

    Article  MathSciNet  Google Scholar 

  20. Ladyzenskaja, O.A., Solonnikov, V. A., Ural’ceva, N.N.: Linear and quasilinear equations of parabolic type. (Russian) Translated from the Russian by S. Smith, Translations of Mathematical Monographs, vol. 23, p. xi+648 . AMS, Providence, R.I. (1968)

  21. Naetar, W., Scherzer, O.: Quantitative photoacoustic tomography with piecewise constant material parameters. SIAM J. Imag. Sci. 7, 1755–1774 (2014)

    Article  MathSciNet  Google Scholar 

  22. Ren, K., Triki, F.: A Global stability estimate for the photo-acoustic inverse problem in layered media. Eur. J. Appl. Math. 30(3), 505–528 (2019)

    Article  MathSciNet  Google Scholar 

  23. ter Elst, A. F.M., Wong, M.F.: Hölder Kernel Estimates for Robin operators and Dirichlet-to-Neumann operators (2019). arXiv:1910.07431

  24. Wang, L.V.: Photoacoustic Tomography: High-resolution Imaging of Optical Contrast In Vivo at Superdepths, pp. 1201–1201. In: From Nano to Macro, IEEE International Symposium on Biomedical Imaging (2009)

  25. Wang, L.V. (ed.): Photoacoustic Imaging and Spectroscopy. CRC Press, Taylor & Francis, Boca Raton (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faouzi Triki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors were supported by the Grant ANR-17-CE40-0029 of the French National Research Agency ANR (Project MultiOnde)

Appendix A: Proof of technical lemmas

Appendix A: Proof of technical lemmas

Proof of Lemma 2

In this proof, \(C=C(n,\mu ,\nu )>1\) is a generic constant.

It is well known that \(G_{1,\nu }\), \(\nu >0\), the fundamental solution of the operator \(-\Delta +\nu \), is given by \(G_{1,\nu }(x,\xi )={\mathcal {G}}_{1,\nu }(x-\xi )\), \(x,\xi \in {\mathbb {R}}^n\), with

$$\begin{aligned} {\mathcal {G}}_{1,\nu }(x)= (2\pi )^{-n/2}(\sqrt{\nu }/|x|)^{n/2-1}K_{n/2-1}(\sqrt{\nu }|x|). \end{aligned}$$

In the particular case \(n=3\), we have \(K_{1/2}(z)=\sqrt{\pi /(2z)}e^{-z}\) and therefore

$$\begin{aligned} {\mathcal {G}}_{1,\nu }(x)=\frac{e^{-\sqrt{\nu }|x|}}{4\pi |x|}. \end{aligned}$$

Let \(f\in C_0^\infty ({\mathbb {R}}^n)\), \(\mu >0\) and \(\nu >0\) be two constants, and denote by u the solution of the equation

$$\begin{aligned} (-\mu \Delta +\nu )u=f\quad \text{ in }\; {\mathbb {R}}^n. \end{aligned}$$

Then,

$$\begin{aligned} u(x)=\int _{{\mathbb {R}}^n}G_{\mu ,\nu }(x,\xi ) f(\xi )d\xi ,\quad x\in {\mathbb {R}}^n. \end{aligned}$$
(A.1)

We remark that \(v(x)=u(\sqrt{\mu }x)\), \(x\in {\mathbb {R}}^n\) satisfies \((-\Delta +\nu )v=f(\sqrt{\mu }\; \cdot )\). Whence

$$\begin{aligned} u(\sqrt{\mu }x)=v(x)&= \int _{{\mathbb {R}}^n}{\mathcal {G}}_{1,\kappa }(x-\xi ) f(\sqrt{\mu }\xi )d\xi \\&= \mu ^{-n/2}\int _{{\mathbb {R}}^n}{\mathcal {G}}_{1,\nu }(x-\xi /\sqrt{\mu }) f(\xi )d\xi ,\quad x\in {\mathbb {R}}^n. \end{aligned}$$

Hence,

$$\begin{aligned} u(x)=\mu ^{-n/2}\int _{{\mathbb {R}}^n}{\mathcal {G}}_{1,\nu }((x-\xi )/\sqrt{\mu }) f(\xi )d\xi ,\quad x\in {\mathbb {R}}^n. \end{aligned}$$
(A.2)

Comparing (A.1) and (A.2), we find

$$\begin{aligned} G_{\mu ,\nu }(x,\xi )=\mu ^{-n/2}{\mathcal {G}}_{1,\nu }((x-\xi )/\sqrt{\mu }),\quad x,\xi \in {\mathbb {R}}^n. \end{aligned}$$

Consequently, \(G_{\mu ,\nu }(x,\xi )={\mathcal {G}}_{\mu ,\nu }(x-\xi )\) with

$$\begin{aligned} {\mathcal {G}}_{\mu ,\nu }(x)= (2\pi \mu )^{-n/2}(\sqrt{\nu \mu }/|x|)^{n/2-1}K_{n/2-1}(\sqrt{\nu }|x|/\sqrt{\mu }),\quad x\in {\mathbb {R}}^n. \end{aligned}$$
(A.3)

By the usual asymptotic formula for modified Bessel functions of the second kind (see for instance [5, 9.7.2, page 378]), we have, when \(|x|\rightarrow \infty \),

$$\begin{aligned} K_{n/2-1}(\sqrt{\nu }|x|/\sqrt{\mu })=\left( \frac{\pi \sqrt{\mu }}{2\sqrt{\nu }|x|}\right) ^{1/2}e^{-\sqrt{\nu }|x|/\sqrt{\mu }}\left( 1+O(1/|x|)\right) , \end{aligned}$$

where O(1/|x|) only depends on n, \(\mu \) and \(\nu \).

Consequently, there exists \(R=R(n,\mu ,\nu )>0\) so that

$$\begin{aligned} C^{-1}\frac{e^{-\sqrt{\nu }|x|/\sqrt{\mu }}}{|x|^{1/2}}\le K_{n/2-1}(\sqrt{\nu }|x|/\sqrt{\mu })\le C\frac{e^{-\sqrt{\nu }|x|/\sqrt{\mu }}}{|x|^{1/2}},\quad |x|\ge R. \end{aligned}$$
(A.4)

Substituting if necessary R by \(\max (R,1)\), we have

$$\begin{aligned} \frac{1}{|x|^{n/2-1}}\le \frac{1}{|x|^{1/2}},\quad |x|\ge R. \end{aligned}$$
(A.5)

Moreover, we have

$$\begin{aligned} \frac{e^{-\sqrt{\nu }|x|/\sqrt{\mu }}}{|x|^{1/2}}=\left[ |x|^{(n-3)/2}e^{-\sqrt{\nu }|x|/(2\sqrt{\mu })}\right] \frac{e^{-\sqrt{\nu }|x|/(2\sqrt{\mu })}}{|x|^{n/2-1}},\quad |x|\ge R. \end{aligned}$$

Since the function \(x\rightarrow |x|^{(n-3)/2}e^{-\sqrt{\nu }|x|/(2\sqrt{\mu })}\) is bounded in \({\mathbb {R}}^n\), we deduce

$$\begin{aligned} \frac{e^{-\sqrt{\nu }|x|/\sqrt{\mu }}}{|x|^{1/2}}\le C\frac{e^{-\sqrt{\nu }|x|/(2\sqrt{\mu })}}{|x|^{n/2-1}},\quad |x|\ge R. \end{aligned}$$
(A.6)

Using (A.5) and (A.6) in (A.4) in order to obtain

$$\begin{aligned} C^{-1}\frac{e^{-\sqrt{\nu }|x|/\sqrt{\mu }}}{|x|^{n/2-1}}\le K_{n/2-1}(\sqrt{\nu }|x|/\sqrt{\mu })\le C\frac{e^{-\sqrt{\nu }|x|/(2\sqrt{\mu })}}{|x|^{n/2-1}},\quad |x|\ge R. \end{aligned}$$
(A.7)

We now establish a similar estimate when \(|x|\rightarrow 0\). To this end, we recall that according to formula [5, 9.6.9, p. 375] we have

$$\begin{aligned} K_{n/2-1}(\rho )\sim \frac{1}{2}\Gamma (n/2-1)\left( \frac{2}{\rho }\right) ^{n/2-1}\quad \text{ as }\; \rho \rightarrow 0, \end{aligned}$$

from which we deduce in a straightforward manner that there exists \(0<r\le R\) so that

$$\begin{aligned} C^{-1}\frac{e^{-\sqrt{\nu }|x|/\sqrt{\mu }}}{|x|^{n/2-1}}\le K_{n/2-1}(\sqrt{\nu }|x|/\sqrt{\mu })\le C\frac{e^{-\sqrt{\nu }|x|/(2\sqrt{\nu })}}{|x|^{n/2-1}},\quad |x|\le r. \end{aligned}$$
(A.8)

The expected two-sided inequality (2.10) follows by combining (A.4), (A.7) and (A.8). \(\square \)

Proof of Lemma 3

Let \({\mathcal {Q}}\) be an open subset of \({\mathbb {R}}^n\), set \(d=\text{ diam }({\mathcal {Q}})\), \(d_x=\text{ dist }(x,\partial {\mathcal {Q}})\) and \(d_{x,y}=\min (d_x,d_y)\).

We introduce the following weighted Hölder semi-norms and Hölder norms, where \(\sigma \in {\mathbb {R}}\), \(0<\gamma \le 1\), and k is nonnegative integer,

$$\begin{aligned}&[w]_{k,0;{\mathcal {Q}}}^{(\sigma )}=[w]_{k,{\mathcal {Q}}}^{(\sigma )}=\sup _{x\in {\mathcal {Q}},\; |\beta |=k}d_x^{k+\sigma }|\partial ^\beta w(x)|, \\&[w]_{k,\gamma ;{\mathcal {Q}}}^{(\sigma )}=\sup _{x,y\in {\mathcal {Q}},\; |\beta |=k}d_{x,y}^{k+\gamma +\sigma }\frac{|\partial ^\beta w(y)-\partial ^\beta w(x)|}{|y-x|^\gamma }, \\&|w|_{k;{\mathcal {Q}}}^{(\sigma )}=\sum _{j=0}^k[w]_{j;{\mathcal {Q}}}^{(\sigma )}, \\&|w|_{k,\gamma ;{\mathcal {Q}}}^{(\sigma )}=|w|_{k;{\mathcal {Q}}}^{(\sigma )}+[w]_{k,\gamma ;{\mathcal {Q}}}^{(\sigma )}. \end{aligned}$$

In terms of these notations, we have

$$\begin{aligned}&|a|_{0,\alpha ;{\mathcal {Q}}}^{(0)}=\sup _{x\in {\mathcal {Q}}}|a(x)|+\sup _{x,y\in {\mathcal {Q}}}d_{x,y}^{\alpha }\frac{|a(y)- a(x)|}{|y-x|^\alpha }\le (1+{\mathbf {d}})\lambda , \\&|\partial _ja|_{0,\alpha ;{\mathcal {Q}}}^{(1)}=\sup _{x\in {\mathcal {Q}}}d_x|\partial _j a(x)|+\sup _{x,y\in {\mathcal {O}}}d_{x,y}^{1+\alpha }\frac{|\partial _ja(y)- \partial _ja(x)|}{|y-x|^\alpha }\le ({\mathbf {d}}+{\mathbf {d}}^2)\lambda , \\&|b|_{0,\alpha ;{\mathcal {Q}}}^{(2)}=\sup _{x\in {\mathcal {O}}}d_x^2|b(x)|+\sup _{x,y\in {\mathcal {Q}}}d_{x,y}^{2+\alpha }\frac{|b(y)- b(x)|}{|y-x|^\alpha }\le ({\mathbf {d}}^2+{\mathbf {d}}^3)\lambda . \end{aligned}$$

In consequence,

$$\begin{aligned} |a|_{0,\alpha ;{\mathcal {Q}}}^{(0)}+|\partial _ja|_{0,\alpha ;{\mathcal {Q}}}^{(1)}+|b|_{0,\alpha ;{\mathcal {Q}}}^{(2)}\le \Lambda ({\mathbf {d}})=\left[ 1+2{\mathbf {d}}+2{\mathbf {d}}^2+{\mathbf {d}}^3\right] \lambda . \end{aligned}$$
(A.9)

Following [17], we define also

$$\begin{aligned}&[w]_{k,0;{\mathcal {Q}}}^*=[w]_{k,{\mathcal {O}}}^*=\sup _{x\in {\mathcal {Q}},\; |\beta |=k}d_x^{k}|\partial ^\beta w(x)|, \\&[w]_{k,\gamma ;{\mathcal {Q}}}^*=\sup _{x,y\in {\mathcal {Q}},\; |\beta |=k}d_{x,y}^{k+\alpha }\frac{|\partial ^\beta w(y)-\partial ^\beta w(x)|}{|y-x|^\gamma }, \\&|w|_{k;{\mathcal {Q}}}^*=\sum _{j=0}^k[w]_{j;{\mathcal {Q}}}^*, \\&|w|_{k,\gamma ;{\mathcal {Q}}}^*=|w|_{k;{\mathcal {Q}}}^*+[w]_{k,\gamma ;{\mathcal {O}}}^*. \end{aligned}$$

From [17, Lemma 6.32, page 130] and its proof, we have the following interpolation inequalities: Suppose that j and k, nonnegative integers, and \(0\le \beta ,\gamma \le 1\) are so that \(j+\beta <k+\gamma \). Then, there exist \(C=C(n,\alpha ,\beta )>0\) and \(\vartheta =\vartheta (\alpha ,\beta )\) so that, for any \(w\in C^{k,\alpha }({\mathcal {Q}})\) and \(\epsilon >0\), we have

$$\begin{aligned}&[w]_{j,\beta ;{\mathcal {Q}}}^*\le C\epsilon ^{-\vartheta }|w|_{0;{\mathcal {Q}}}+\epsilon [w]_{k,\gamma ;{\mathcal {Q}}}^*, \end{aligned}$$
(A.10)
$$\begin{aligned}&|w|_{j,\beta ;{\mathcal {Q}}}^*\le C\epsilon ^{-\vartheta }|w|_{0;{\mathcal {Q}}}+\epsilon [w]_{k,\gamma ;{\mathcal {Q}}}^*. \end{aligned}$$
(A.11)

Here, \(|w|_{0;{\mathcal {Q}}}=\sup _{x\in {\mathcal {Q}}}|w(x)|\).

Checking carefully the proof of interior Schauder estimates in [17, Theorem 6.2, page 90], we get, taking into account inequalities (A.9)-(A.11), the following result: There exist a constant \(C=C(n)>0\) and \(\tau =\tau (\alpha )\) so that, for any \(0<\mu \le 1/2\) and \(w\in C^{k,\alpha }({\mathcal {Q}})\) satisfying \(L_{a,b}w=0\) in \({\mathcal {Q}}\), we have

$$\begin{aligned}{}[w]_{2,\alpha ,{\mathcal {Q}}}^*\le C\Lambda ({\mathbf {d}})\left( \mu ^{-\tau }|w|_{0;{\mathcal {Q}}}+\mu ^\alpha [w]_{2,\alpha ,{\mathcal {Q}}}^*\right) . \end{aligned}$$
(A.12)

Substituting in (A.12) C by \(\max (C,2^{\alpha -1})\), we may assume in (A.12) that \(C=C(n,\alpha )\ge 2^{\alpha -1}\). Bearing in mind that \(\Lambda ({\mathbf {d}})>1\), we can take in (A.12), \(\mu =(2C\Lambda ({\mathbf {d}}))^{-1/\alpha } \). We find

$$\begin{aligned}{}[w]_{2,\alpha ,{\mathcal {Q}}}^*\le C\Lambda ({\mathbf {d}})^\varkappa |w|_{0;{\mathcal {Q}}}, \end{aligned}$$
(A.13)

for some constants \(C=C(n,\alpha )>0\) and \(\varkappa =\varkappa (\alpha )>1\).

Using again interpolation inequalities (A.10) and (A.11), we deduce that

$$\begin{aligned} |w|_{2,\alpha ,{\mathcal {Q}}}^*\le C\Lambda ({\mathbf {d}})^\varkappa |w|_{0;{\mathcal {Q}}}. \end{aligned}$$
(A.14)

Let \(\delta >0\) be so that \({\mathcal {Q}}_\delta =\{x\in {\mathcal {Q}};\; \text{ dist }(x,\partial {\mathcal {Q}})>\delta \}\) is non-empty. If \({\mathcal {Q}}'\) is an open subset of \({\mathcal {Q}}_\delta \), then (A.14) yields in a straightforward manner

$$\begin{aligned} \Vert w\Vert _{C^{2,\alpha }\left( \overline{{\mathcal {Q}}'}\right) } \le C\max \left( \delta ^{-(2+\alpha )},1\right) \Lambda ({\mathbf {d}})^\varkappa |w|_{0;{\mathcal {Q}}}. \end{aligned}$$

This is the expected inequality. \(\square \)

Lemma 14

Let K be a compact subset of \({\mathbb {R}}^n\) and \(f\in C^{2,\alpha }(K)\) satisfying \(\min _K|f|\ge c_->0\). Then,

$$\begin{aligned} \Vert 1/f\Vert _{C^{2,\alpha }(K)}\le C c_+^4\left( 1+\Vert f\Vert _{C^{2,\alpha }(K)}\right) ^3, \end{aligned}$$
(A.15)

where \(c_+=\max (1,c_-^{-1})\) and \(C=C(\mathrm {diam}(K))\) is a constant.

Proof

Let \(x,y\in K\). Using \(|1/f|_{0;K}\le c_+\) and the following identities

$$\begin{aligned}&\frac{1}{f^2(y)}-\frac{1}{f^2(x)}=\left( \frac{1}{f(x)f^2(y)}+\frac{1}{f(x)^2f(y)}\right) (f(x)-f(y)), \\&\frac{1}{f^3(y)}-\frac{1}{f^3(x)}=\left( \frac{1}{f(x)f^3(y)}+\frac{1}{f^2(x)f^2(y)}+\frac{1}{f(x)^3f(y)}\right) (f(x)-f(y)), \end{aligned}$$

we easily get

$$\begin{aligned}{}[1/f^j]_{\alpha ;K}\le 3c_+^4[f]_{\alpha ;K},\quad j=2,3. \end{aligned}$$
(A.16)

Also, we have

$$\begin{aligned} \frac{\partial _if(y)\partial _j f(x)}{f^3(y)}-\frac{\partial _if(y)\partial _j f(x)}{f^3(x)}&=\frac{\partial _if(y)}{f^3(y)}(\partial _j f(y)-\partial _j f(x)) \\&\quad + \frac{\partial _jf(x)}{f^3(y)}(\partial _i f(y)-\partial _i f(x))\\&\quad +\left( \frac{1}{f^3(y)}-\frac{1}{f^3(x)}\right) (\partial _if(y)\partial _j f(x)). \end{aligned}$$

In light of (A.16), this identity yields

$$\begin{aligned} \left[ \partial _if\partial _jf/f^3\right] _{\alpha ;K}&\le c_+^4\left( [\partial _if]_{\alpha ;K}|\partial _jf|_{0;K}\right. \\&\quad \left. +[\partial _jf]_{\alpha ;K}|\partial _if|_{0;K}+[f]_{\alpha ;K}|\partial _if|_{0;K}|\partial _jf|_{0;K}\right) .\nonumber \end{aligned}$$
(A.17)

On the other hand, since

$$\begin{aligned} \frac{\partial _{ij}^2f(y)}{f^2(y)}-\frac{\partial _{ij}^2f(x)}{f^2(x)}=\frac{1}{f^2(y)}\left( \partial _{ij}^2f(y)-\partial _{ij}^2f(x)\right) +\left( \frac{1}{f^2(y)}-\frac{1}{f^2(y)}\right) \partial _{ij}^2f(x), \end{aligned}$$

we find, by using again (A.16),

$$\begin{aligned} \left[ \partial _{ij}^2f/f^2\right] _{\alpha ;K}\le 3c_+^4\left( \left[ \partial _{ij}^2f\right] _{\alpha ;K}+[f]_{\alpha ;K}\left| \partial _{ij}^2f\right| _{0,K}\right) . \end{aligned}$$
(A.18)

Inequalities (A.17), (A.18), the identity \(\partial _{ij}^2(1/f)=2\partial _if\partial _jf/f^3-\partial _{ij}^2f/f^2\) and the interpolation inequality [17, Lemma 6.35, p. 135] (by proceeding as in Corollary 2) imply

$$\begin{aligned} {[}\partial _{ij}^2(1/f)]_{\alpha ,K}\le Cc_+^4\left( 1+\Vert f\Vert _{C^{2,\alpha }(K)}\right) ^3, \end{aligned}$$
(A.19)

where \(C=C(\text{ diam }(K))\) is a constant.

The other terms for 1/f appearing in the norms \(\Vert \cdot \Vert _{C^{2,\alpha }(K)}\) can be estimated similarly to the semi-norm in (A.19). Inequality (A.15) then follows. \(\square \)

Recall that \(0<\theta<\alpha <1\).

Lemma 15

\(C^{2,\alpha }(\overline{{\mathcal {O}}})\) is continuously embedded in \(H^{2+\theta }({\mathcal {O}})\). Furthermore, there exists \(C=C(n,\alpha -\theta )\) so that, for any \(w\in C^{2,\alpha }(\overline{{\mathcal {O}}})\), we have

$$\begin{aligned} \Vert w\Vert _{H^{2+\theta }({\mathcal {O}})} \le C\max \left( {\mathbf {d}}^{n/2},{\mathbf {d}}^{n/2+\alpha -\theta }\right) \Vert w\Vert _{C^{2,\alpha }\left( \overline{{\mathcal {O}}}\right) }, \end{aligned}$$
(A.20)

where \({\mathbf {d}}=\mathrm {diam}({\mathcal {O}})\).

Proof

Let \(w\in C^{2,\alpha }(\overline{{\mathcal {O}}})\) and, for fixed \(1\le i,j\le n\), set \(g=\partial _{ij}^2w\). Then,

$$\begin{aligned} \int _{{\mathcal {O}}} \int _{{\mathcal {O}}} \frac{|g(x)-g(y)|^2}{|x-y|^{n+2\theta }}dxdy\le [g]_{\alpha ;{\mathcal {O}}}^2 \int _{{\mathcal {O}}} \int _{{\mathcal {O}}} \frac{1}{|x-y|^{n-2(\alpha -\theta )}}dxdy. \end{aligned}$$

In light of [10, Lemma A3, p. 246], this inequality yields

$$\begin{aligned} \int _{{\mathcal {O}}} \int _{{\mathcal {O}}} \frac{|g(x)-g(y)|^2}{|x-y|^{n+2\theta }}dxdy\le \frac{|{\mathbb {S}}^{n-1}||{\mathcal {O}}|{\mathbf {d}}^{2(\alpha -\theta )}}{2(\alpha -\theta )}[g]_{\alpha ;{\mathcal {O}}}^2, \end{aligned}$$

But \(|{\mathcal {O}}|\le |B(0,{\mathbf {d}})|\). Hence,

$$\begin{aligned} \int _{{\mathcal {O}}} \int _{{\mathcal {O}}} \frac{|g(x)-g(y)|^2}{|x-y|^{n+2\theta }}dxdy\le \frac{|{\mathbb {S}}^{n-1}|^2{\mathbf {d}}^{n+2(\alpha -\theta )}}{2(\alpha -\theta )}[g]_{\alpha ;{\mathcal {O}}}^2. \end{aligned}$$
(A.21)

Using (A.21) and the inequality

$$\begin{aligned} \Vert h\Vert _{L^2({\mathcal {O}})}^2\le |{\mathbb {S}}^{n-1}|{\mathbf {d}}^n|h|_{0,{\mathcal {O}}},\quad h\in C(\overline{{\mathcal {O}}}), \end{aligned}$$

we get from the definition of the norm of \(H^s\)-spaces in [18, formula (1.3.2.2), page 17]

$$\begin{aligned} \Vert w\Vert _{H^{2+\theta }({\mathcal {O}})} \le C\max \left( {\mathbf {d}}^{n/2},{\mathbf {d}}^{n/2+\alpha -\theta }\right) \Vert w\Vert _{C^{2,\alpha }(\overline{{\mathcal {O}}})}, \end{aligned}$$

for some constant \(C=C(n,\alpha -\theta )>0\). This is the expected inequality \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonnetier, E., Choulli, M. & Triki, F. Stability for quantitative photoacoustic tomography revisited. Res Math Sci 9, 24 (2022). https://doi.org/10.1007/s40687-022-00322-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-022-00322-6

Keywords

Mathematics Subject Classification

Navigation