Skip to main content
Log in

Development of a Wave Energy Converter with Mechanical Power Take-Off via Supplementary Inertia Control

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

To reduce environmental pollution, alternative renewable energy resources have been explored for decades. Wave energy has a high energy density, high utilization time and no fuel costs, so it is considered as the most promising alternative to the fossil fuel resources. The number of studies of wave energy converters (WECs) has rapidly increased. This paper proposes a new method to achieve the resonant behavior of a point absorber floating buoy type of WEC using a mechanical power take-off system. By using the inertia characteristics of a hydraulic flywheel accumulator-based electro-hydraulic actuator to change the corresponding supplementary mass of the floating buoy, the total mass of the buoy was close to a match with the relatively low frequency of the wave, so that the buoy was in resonance with the wave. The specifications of the hydraulic flywheel accumulator system were proposed and studied. The working principle was analyzed, and a mathematical model was then derived to investigate the system operation. An experimental set-up was implemented to validate the mathematical model. Numerical simulation using MATLAB/Simulink was done to evaluate the operation of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yang, S. M., Ji, H. S., Shim, D. S., Baek, J. H., & Park, S. H. (2017). Conical roll-twist-bending process for fabrication of metallic archimedes spiral blade used in small wind power generator. International Journal of Precision Engineering and Manufacturing—Green Technology, 4, 431–439.

    Article  Google Scholar 

  2. Garate, J., Solovitz, S. A., & Kim, D. (2018). Fabrication and performance of segmented thermoplastic composite wind turbine blades. International Journal of Precision Engineering and Manufacturing—Green Technology, 5, 271–277.

    Article  Google Scholar 

  3. Kim, Y. W., Park, J. H., Lee, N. K., & Yoon, J. H. (2017). Profile design of loop-type blade for small wind turbine. International Journal of Precision Engineering and Manufacturing—Green Technology, 4, 387–392.

    Article  Google Scholar 

  4. Jahangiri, M., & Shamsabadi, A. A. (2017). Designing a horizontal-axis wind turbine for South Khorasan Province: A case study. International Journal of Precision Engineering and Manufacturing—Green Technology, 18, 1463–1473.

    Article  Google Scholar 

  5. Kang, J. H., & Lee, H. W. (2017). Study on the design parameters of a low speed coupling of a wind turbine. International Journal of Precision Engineering and Manufacturing—Green Technology, 18, 721–727.

    Article  Google Scholar 

  6. Cruz, J. (2010). Ocean wave energy, current status and future perspectives. Berlin: Springer.

    Google Scholar 

  7. Falcão, A. F. O. (2010). Wave energy utilization: A review of the technologies. Renewable and Sustainable Energy Reviews, 14, 899–918.

    Article  Google Scholar 

  8. Iraide, L., Jon, A., Salvador, C., de Iñigo Martínez, A., & Iñigo, K. (2013). Review of wave energy technologies and the necessary power-equipment. Renewable and Sustainable Energy Reviews, 27, 413–434.

    Article  Google Scholar 

  9. Binh, P. C., Nam, D. N. C., & Ahn, K. K. (2015). Modeling and experimental investigation on dielectric electro-active polymer generator. International Journal of Precision Engineering and Manufacturing—Green Technology, 16, 945–955.

    Article  Google Scholar 

  10. Binh, P. C., Nam, D. N. C., & Ahn, K. K. (2014). Modeling and experimental analysis of an antagonistic energy conversion using dielectric electro-active polymers. Mechatronics, 24, 1166–1177.

    Article  Google Scholar 

  11. Binh, P. C., & Ahn, K. K. (2016). Performance optimization of dielectric electro active polymers in wave energy converter application. International Journal of Precision Engineering and Manufacturing—Green Technology, 17, 1175–1185.

    Article  Google Scholar 

  12. Chiba, S., Waki, M., Wada, T., Hirakawa, Y., Masuda, K., & Ikoma, T. (2013). Consistent ocean wave energy harvesting using electroactive polymer (dielectric elastomer) artificial muscle generators. Applied Energy, 104, 497–502.

    Article  Google Scholar 

  13. Leijon, M., Bernhoff, H., Agren, O., Jan, I., Jan, S., Marcus, B., et al. (2005). Multiphysics simulation of wave energy to electric energy conversion by permanent magnet linear generator. IEEE Transactions on Energy Conversion, 20, 219–224.

    Article  Google Scholar 

  14. Colli, V. D., Cancelliere, P., Marignetti, F., Stefano, R. D., & Scarano, M. (2006). A tubular-generator drive for wave energy conversion. IEEE Transactions on Industrial Electronics, 53(4), 1152–1159.

    Article  Google Scholar 

  15. Binh, P. C., Truong, D. Q., Ahn, K. K. (2012). A study on wave energy conversion using direct linear generator. In 12th international conference on control, automation and systems.

  16. Richard, C., Helen, B., Markus, M., Edward, S., & Paul, M. (2013). Analysis, design and testing of a novel direct-drive wave energy converter system. IET Renewable Power Generation, 7, 565–573.

    Article  Google Scholar 

  17. Silvia, B., Adrià Moreno, M., Alessandro, A., Giuseppe, P., & Renata, A. (2013). Modeling of a point absorber for energy conversion in Italian seas. Energies, 6, 3033–3051.

    Article  Google Scholar 

  18. Ocean Power Technologies. http://www.oceanpowertechnologies.com. Accessed 2015

  19. Wave Star Energy. http://www.wavestarenergy.com. Accessed 2015

  20. Ahn, K. K., Truong, D. Q., Tien, H. H., & Yoon, J. I. (2012). An innovative design of wave energy converter. Renewable Energy, 42, 186–194.

    Article  Google Scholar 

  21. Truong, D. Q., & Ahn, K. K. (2014). Development of a novel point absorber in heave for wave energy conversion. Renewable Energy, 65, 183–191.

    Article  Google Scholar 

  22. Joseba, L., Juan, C. A., Carlos, A., Patxi, E., Maider, S., & Pierpaolo, R. (2012). Design, construction and testing of a hydraulic power take-off for wave energy converters. Energies, 5, 2030–2052.

    Article  Google Scholar 

  23. Al-Habaibeh, A., Sub, D., McCague, J., & Knight, A. (2010). An innovative approach for energy generation from waves. Energy Conversion and Management, 51, 1664–1668.

    Article  Google Scholar 

  24. Albert, A., Berselli, G., Bruzzone, L., & Fanghella, P. (2017). Mechanical design and simulation of an onshore four-bar wave energy converter. Renewable Energy, 114(Part B), 766–774.

    Article  Google Scholar 

  25. Tri, N. M., Binh, P. C., & Ahn, K. K. (2018). Power take-off system based on continuously variable transmission configuration for wave energy converter. International Journal of Precision Engineering and Manufacturing—Green Technology, 5, 89–101.

    Article  Google Scholar 

  26. Dung, D. T., Binh, P. C., & Ahn, K. K. (2019). Design and investigation of a novel point absorber on performance optimization mechanism for wave energy converter in heave mode. International Journal of Precision Engineering and Manufacturing—Green Technology (Accepted).

  27. Al-Hamadani, H., An, T., King, M., & Long, H. (2017). System dynamic modelling of three different wind turbine gearbox designs under transient loading conditions. International Journal of Precision Engineering and Manufacturing—Green Technology, 18, 1659–1668.

    Article  Google Scholar 

  28. Qin, Z., Wu, Y. T., & Lyu, S. K. (2018). A review of recent advances in design optimization of gearbox. International Journal of Precision Engineering and Manufacturing—Green Technology, 19, 1753–1762.

    Article  Google Scholar 

  29. Sun, W., Li, X., & Wei, J. (2018). An approximate solution method of dynamic reliability for wind turbine gear transmission with parameters of uncertain distribution type. International Journal of Precision Engineering and Manufacturing—Green Technology, 19, 849–857.

    Article  Google Scholar 

  30. Folley, M., & Whittaker, T. J. T. (2009). Analysis of the nearshore wave energy resource. Renewable Energy, 34, 1709–1715.

    Article  Google Scholar 

  31. Jørgen, H. T. (2013). Practical limits to the power that can be captured from ocean waves by oscillating bodies. International Journal of Marine Energy, 3–4, e70–e81.

    Google Scholar 

  32. Binh, P. C., Tri, N. M., Dung, D. T., Ahn, K. K., Kim, S. J., & Koo, W. (2016). Analysis, design and experiment investigation of a novel wave energy converter. IET Generation, Transmission and Distribution, 10, 460–469.

    Article  Google Scholar 

  33. Falnes, J. (2002). Ocean waves and oscillating systems, linear interaction including wave-energy extraction. Cambridge: Cambridge University.

    Book  Google Scholar 

  34. Alves, M., Traylor, H., & Sarmento, A. (2007). Hydrodynamic optimization of a wave energy converter using a heave motion buoy. In 7th European wave and tidal energy conference.

  35. Vantorre, M., Banasiak, R., & Verhoeven, R. (2004). Modelling of hydraulic performance and wave energy extraction by a point absorber in heave. Applied Ocean Research, 26, 61–72.

    Article  Google Scholar 

  36. Binh, P. C., Nam, D. N. C., & Ahn, K. K. (2015). Design and modeling of an innovative wave energy converter using dielectric electro-active polymers generator. International Journal of Precision Engineering and Manufacturing—Green Technology, 16, 1833–1843.

    Article  Google Scholar 

  37. ROTARYSYSTEMS. https://rotarysystems.com/rotary-unions/. Accessed 2017

  38. Cummins, W. E. (1962). The impulse response function and ship motions. In Symposium on ship theory. Hamburg: Institut für Schiffbau.

  39. WAMIT Version 7.0 User Manual. http://www.wamit.com. Accessed 2015

  40. Armstrong, B., & de Wit, C. C. (1995). Friction modelling and compensation: The control handbook. Boca Raton: CRC Press.

    Google Scholar 

  41. de Van, V. (2013). US 8,590,420 B2. United States Patent.

  42. Ha, T. W., et al. (2017). Position control of an electro-hydrostatic rotary actuator using adaptive PID control. Journal of Drive and Control, 14(4), 37–44.

    MathSciNet  Google Scholar 

  43. Lim, C. W. (2017). Design and manufacture of small-scale wind turbine simulator to emulate torque response of MW wind turbine. International Journal of Precision Engineering and Manufacturing—Green Technology, 4, 409–418.

    Article  Google Scholar 

  44. Lee, Y. B., & Yoo, H. J. (2017). Study of a durability test for single-input multi-output power take-off gearboxes. Journal of Drive and Control, 14(1), 29–34.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the 2019 Research Fund of University of Ulsan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Kwan Ahn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, T.D., Nguyen, M.T., Phan, C.B. et al. Development of a Wave Energy Converter with Mechanical Power Take-Off via Supplementary Inertia Control. Int. J. of Precis. Eng. and Manuf.-Green Tech. 6, 497–509 (2019). https://doi.org/10.1007/s40684-019-00098-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00098-1

Keywords

Navigation