Skip to main content
Log in

The Hodge star operator and the Beltrami equation

  • Research
  • Published:
Complex Analysis and its Synergies Aims and scope Submit manuscript

Abstract

An essentially unique homeomorphic solution to the Beltrami equation with measurable coefficients was found in the 1930s by Morrey. The most well-known proof from the 1960s uses the theory of Calderón–Zygmund and singular integral operators in \(L^p(\mathbb {C})\). We will present an alternative method to solve the Beltrami equation using the Hodge star operator and standard elliptic PDE theory. We will also discuss a different method to prove the regularity of the solution. This approach is partially based on work by Dittmar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors, L.V.: Lectures on Quasiconformal Mappings, 2nd edn. American Mathematical Society, Providence, RI (2006)

    MATH  Google Scholar 

  2. Astala, K., Iwaniec, T., Martin, G.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton University Press, Princeton, NJ (2009)

    MATH  Google Scholar 

  3. Bojarski, B.V.: Generalized solutions of a system of differential equations of first order and of elliptic type with discontinuous coefficients. Mat. Sb. N.S. 43(85), 451–503 (1957)

    MathSciNet  Google Scholar 

  4. Chern, S.S.: An elementary proof of the existence of isothermal parameters on a surface. Proc. Am. Math. Soc. 6, 771–782 (1955)

    Article  MathSciNet  Google Scholar 

  5. Dittmar, B.: Ein neuer Existenzbeweis für quasikonforme Abbildungen mit vorgegebener komplexer Dilatation. In: Proc. Seventh Conf., Kozubnik, (Kozubnik, 1979), Springer, Berlin (1980)

  6. Donaldson, S.K., Sullivan, D.P.: Quasiconformal \(4\)-manifolds. Acta Math. 163, 181–252 (1989)

    Article  MathSciNet  Google Scholar 

  7. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer-Verlag, Berlin (1998)

    MATH  Google Scholar 

  8. Glutsyuk, A.A.: Simple proofs of uniformization theorems. Fields Inst. Commun. 53, 125–143 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer, New York (2001)

    Book  Google Scholar 

  10. Hellwig, G.: Partial Differential Equations. An introduction, Second Edition, B. G. Teubner, Stuttgart (1977)

    MATH  Google Scholar 

  11. Hubbard, J.H.: Teichmüller Theory and Applications to Geometry, Topology, and Dynamics, vol. 1. Matrix Editions, Ithaca, NY (2006)

    MATH  Google Scholar 

  12. Iwaniec, T., Martin, G.: Quasiregular mappings in even dimensions. Acta Math. 170, 29–81 (1993)

    Article  MathSciNet  Google Scholar 

  13. Korn, A.: Zwei Anwendungen der Methode der sukzessiven Annäherungen, Schwarz Abhandlungen, 215–229 (1914)

  14. Lichtenstein, L.: Zur theorie der konformen Abbildung. Konforme Abbildung nichtanalytischer, singularitätenfreier Flächenstücke auf ebene Gebiete. Bull. Int. de l’Acad. Sci. Cracovie, ser. A, 192–217 (1916)

  15. Ligocka, E.: On Dittmar’s approach to the Beltrami equation. Colloq. Math. 92, 189–195 (2002)

    Article  MathSciNet  Google Scholar 

  16. Morrey, C.B.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43, 126–166 (1938)

    Article  MathSciNet  Google Scholar 

  17. Newlander, A., Nirenberg, L.: Complex analytic coordinates in almost complex manifolds. Ann. Math. (2) 65, 291–404 (1957)

    Article  MathSciNet  Google Scholar 

  18. Schauder, J.: Über lineare elliptische Differentialgleichungen zweiter Ordnung. Math. Z. 38, 257–282 (1934)

    Article  MathSciNet  Google Scholar 

  19. Schouten, J.A.: Ricci-Calculus. An Introduction to Tensor Analysis and Its Geometrical Applications, 2nd edn. Springer, Berlin (1954)

    Book  Google Scholar 

  20. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, NJ (1970)

    MATH  Google Scholar 

  21. Taylor, M.E.: Partial Differential Equations. I Basic Theory, 2nd edn. Springer, New York (2011)

    Book  Google Scholar 

Download references

Acknowledgements

The author would like to thank Mario Bonk for introducing him to the problem and the many helpful discussions. The author was partially supported by NSF grant DMS 1506099.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eden Prywes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prywes, E. The Hodge star operator and the Beltrami equation. Complex Anal Synerg 8, 8 (2022). https://doi.org/10.1007/s40627-022-00096-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40627-022-00096-1

Navigation