Skip to main content

Advertisement

Log in

Urinary proteomics reveals key markers of salt sensitivity in hypertensive patients during saline infusion

  • Original Article
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Background

Hypertension is a complex disease and is the major cause of cardiovascular complications. In the vast majority of individuals, the aetiology of elevated blood pressure (BP) cannot be determined, thus impairing optimized therapies and prognosis for individual patients. A more precise understanding of the molecular pathogenesis of hypertension remains a pressing priority for both basic and translational research. Here we investigated the effect of salt on naive hypertensive patients in order to better understand the salt intake-blood pressure relationship.

Methods

Patients underwent an acute saline infusion and were defined as salt-sensitive or salt-resistant according to mean blood pressure changes. Urinary proteome changes during the salt load test were analysed by a label-free quantitative proteomics approach.

Results

Our data show that salt-sensitive patients display equal sodium reabsorption as salt-resistant patients, as major sodium transporters show the same behaviour during the salt load. However, salt-sensitive patients regulate the renin angiotensin system (RAS) differently from salt-resistant patients, and upregulate proteins, as epidermal growth factor (EGF) and plasminogen activator, urokinase (PLAU), involved in the regulation of epithelial sodium channel ENaC activity.

Conclusions

Salt-sensitive and salt-resistant subjects have similar response to a saline/volume infusion as detected by urinary proteome. However, we identified glutamyl aminopeptidase (ENPEP), PLAU, EGF and Xaa-Pro aminopeptidase 2 precursor XPNPEP2 as key molecules of salt-sensitivity, through modulation of ENaC-dependent sodium reabsorption along the distal tubule.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Proteomic datasets produced in this study are available in the following database: Peptide Atlas repository, https://www.peptideatlas.org/. Accession number PASS00383 for T0 samples; accession number PASS01405 for T120 and T240 samples.

References

  1. Lawes CM, Vander Hoorn S, Rodgers A, International Society of H (2008) Global burden of blood-pressure-related disease, 2001. Lancet 371(9623):1513–1518. https://doi.org/10.1016/S0140-6736(08)60655-8

    Article  Google Scholar 

  2. Elliott P, Stamler J, Nichols R, Dyer AR, Stamler R, Kesteloot H, Marmot M (1996) Intersalt revisited: further analyses of 24 hour sodium excretion and blood pressure within and across populations. Intersalt Cooperative Research Group BMJ 312(7041):1249–1253. https://doi.org/10.1136/bmj.312.7041.1249

    Article  CAS  Google Scholar 

  3. Stamler J (1997) The INTERSALT study: background, methods, findings, and implications. Am J Clin Nutr 65(2 Suppl):626S–642S. https://doi.org/10.1093/ajcn/65.2.626S

    Article  CAS  PubMed  Google Scholar 

  4. Trepiccione F, Zacchia M, Capasso G (2012) The role of the kidney in salt-sensitive hypertension. Clin Exp Nephrol 16(1):68–72. https://doi.org/10.1007/s10157-011-0489-y

    Article  CAS  PubMed  Google Scholar 

  5. Weinberger MH, Fineberg NS (1991) Sodium and volume sensitivity of blood pressure. Age and pressure change over time. Hypertension 18(1):67–71

    Article  CAS  Google Scholar 

  6. Rodriguez-Iturbe B, Romero F, Johnson RJ (2007) Pathophysiological mechanisms of salt-dependent hypertension. Am J Kidney Dis 50(4):655–672. https://doi.org/10.1053/j.ajkd.2007.05.025

    Article  PubMed  Google Scholar 

  7. Weinberger MH (1996) Salt sensitivity of blood pressure in humans. Hypertension 27(3 Pt 2):481–490

    Article  CAS  Google Scholar 

  8. Prisk GK, Olfert IM, Arai TJ, Wagner PD, Hopkins SR (2010) Rapid intravenous infusion of 20 ml/kg saline does not impair resting pulmonary gas exchange in the healthy human lung. J Appl Physiol 108(1):53–59. https://doi.org/10.1152/japplphysiol.00787.2009

    Article  PubMed  Google Scholar 

  9. Beeks E, Kessels AG, Kroon AA, van der Klauw MM, de Leeuw PW (2004) Genetic predisposition to salt-sensitivity: a systematic review. J Hypertens 22(7):1243–1249

    Article  CAS  Google Scholar 

  10. Manunta P, Lavery G, Lanzani C, Braund PS, Simonini M, Bodycote C, Zagato L, Delli Carpini S, Tantardini C, Brioni E, Bianchi G, Samani NJ (2008) Physiological interaction between alpha-adducin and WNK1-NEDD4L pathways on sodium-related blood pressure regulation. Hypertension 52(2):366–372. https://doi.org/10.1161/HYPERTENSIONAHA.108.113977

    Article  CAS  PubMed  Google Scholar 

  11. Citterio L, Simonini M, Zagato L, Salvi E, Delli Carpini S, Lanzani C, Messaggio E, Casamassima N, Frau F, D'Avila F, Cusi D, Barlassina C, Manunta P (2011) Genes involved in vasoconstriction and vasodilation system affect salt-sensitive hypertension. PLoS ONE 6(5):e19620. https://doi.org/10.1371/journal.pone.0019620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weinberger MH, Fineberg NS, Fineberg SE, Weinberger M (2001) Salt sensitivity, pulse pressure, and death in normal and hypertensive humans. Hypertension 37(2 Pt 2):429–432

    Article  CAS  Google Scholar 

  13. Petrazzuolo O, Trepiccione F, Zacchia M, Capasso G (2010) Hypertension and renal calcium transport. J Nephrol 23(Suppl 16):S112–117

    PubMed  Google Scholar 

  14. Matafora V, Zagato L, Ferrandi M, Molinari I, Zerbini G, Casamassima N, Lanzani C, Delli Carpini S, Trepiccione F, Manunta P, Bachi A, Capasso G (2014) Quantitative proteomics reveals novel therapeutic and diagnostic markers in hypertension. BBA Clin 2:79–87. https://doi.org/10.1016/j.bbacli.2014.10.001

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75(3):663–670. https://doi.org/10.1021/ac026117i

    Article  PubMed  Google Scholar 

  16. Matafora V, D'Amato A, Mori S, Blasi F, Bachi A (2009) Proteomics analysis of nucleolar SUMO-1 target proteins upon proteasome inhibition. Mol Cell Proteom 8(10):2243–2255. https://doi.org/10.1074/mcp.M900079-MCP200

    Article  CAS  Google Scholar 

  17. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. https://doi.org/10.1038/nbt.1511

    Article  CAS  PubMed  Google Scholar 

  18. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805. https://doi.org/10.1021/pr101065j

    Article  CAS  PubMed  Google Scholar 

  19. Takenaka T, Suzuki H, Furukawa T, Ogata Y, Saruta T (1990) Role of intrarenal renin-angiotensin system on pressure-natriuresis in spontaneously hypertensive rats. Clin Exp Hypertens A 12(8):1377–1394

    CAS  PubMed  Google Scholar 

  20. Kobori H, Nishiyama A, Abe Y, Navar LG (2003) Enhancement of intrarenal angiotensinogen in Dahl salt-sensitive rats on high salt diet. Hypertension 41(3):592–597. https://doi.org/10.1161/01.HYP.0000056768.03657.B4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Drueke TB (2016) Salt and health: time to revisit the recommendations. Kidney Int 89(2):259–260. https://doi.org/10.1016/j.kint.2015.12.009

    Article  CAS  PubMed  Google Scholar 

  22. McDonough AA, Nguyen MT (2015) Maintaining balance under pressure: integrated regulation of renal transporters during hypertension. Hypertension 66(3):450–455. https://doi.org/10.1161/HYPERTENSIONAHA.115.04593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kotlo K, Shukla S, Tawar U, Skidgel RA, Danziger RS (2007) Aminopeptidase N reduces basolateral Na+–K+–ATPase in proximal tubule cells. Am J Physiol Ren Physiol 293(4):F1047–1053. https://doi.org/10.1152/ajprenal.00074.2007

    Article  CAS  Google Scholar 

  24. Capasso G, Cantone A, Evangelista C, Zacchia M, Trepiccione F, Acone D, Rizzo M (2005) Channels, carriers, and pumps in the pathogenesis of sodium-sensitive hypertension. Semin Nephrol 25(6):419–424. https://doi.org/10.1016/j.semnephrol.2005.05.013

    Article  CAS  PubMed  Google Scholar 

  25. Zacchia M, Capasso G (2015) The importance of uromodulin as regulator of salt reabsorption along the thick ascending limb. Nephrol Dial Transplant 30(2):158–160. https://doi.org/10.1093/ndt/gfu365

    Article  CAS  PubMed  Google Scholar 

  26. Padmanabhan S, Melander O, Johnson T, Di Blasio AM, Lee WK, Gentilini D, Hastie CE, Menni C, Monti MC, Delles C, Laing S, Corso B, Navis G, Kwakernaak AJ, van der Harst P, Bochud M, Maillard M, Burnier M, Hedner T, Kjeldsen S, Wahlstrand B, Sjogren M, Fava C, Montagnana M, Danese E, Torffvit O, Hedblad B, Snieder H, Connell JM, Brown M, Samani NJ, Farrall M, Cesana G, Mancia G, Signorini S, Grassi G, Eyheramendy S, Wichmann HE, Laan M, Strachan DP, Sever P, Shields DC, Stanton A, Vollenweider P, Teumer A, Volzke H, Rettig R, Newton-Cheh C, Arora P, Zhang F, Soranzo N, Spector TD, Lucas G, Kathiresan S, Siscovick DS, Luan J, Loos RJ, Wareham NJ, Penninx BW, Nolte IM, McBride M, Miller WH, Nicklin SA, Baker AH, Graham D, McDonald RA, Pell JP, Sattar N, Welsh P, Global BC, Munroe P, Caulfield MJ, Zanchetti A, Dominiczak AF (2010) Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. PLoS Genet 6(10):e1001177. https://doi.org/10.1371/journal.pgen.1001177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Trudu M, Janas S, Lanzani C, Debaix H, Schaeffer C, Ikehata M, Citterio L, Demaretz S, Trevisani F, Ristagno G, Glaudemans B, Laghmani K, Dell’Antonio G, Team S, Loffing J, Rastaldi MP, Manunta P, Devuyst O, Rampoldi L (2013) Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression. Nat Med 19(12):1655–1660. https://doi.org/10.1038/nm.3384

    Article  CAS  PubMed  Google Scholar 

  28. Capasso G, Rizzo M, Evangelista C, Ferrari P, Geelen G, Lang F, Bianchi G (2005) Altered expression of renal apical plasma membrane Na+ transporters in the early phase of genetic hypertension. Am J Physiol Ren Physiol 288(6):F1173–1182. https://doi.org/10.1152/ajprenal.00228.2004

    Article  CAS  Google Scholar 

  29. Capasso G, Rizzo M, Garavaglia ML, Trepiccione F, Zacchia M, Mugione A, Ferrari P, Paulmichl M, Lang F, Loffing J, Carrel M, Damiano S, Wagner CA, Bianchi G, Meyer G (2008) Upregulation of apical sodium-chloride cotransporter and basolateral chloride channels is responsible for the maintenance of salt-sensitive hypertension. m J Physiol Ren Physiol 295(2):F556–567. https://doi.org/10.1152/ajprenal.00340.2007

    Article  CAS  Google Scholar 

  30. Oweis S, Wu L, Kiela PR, Zhao H, Malhotra D, Ghishan FK, Xie Z, Shapiro JI, Liu J (2006) Cardiac glycoside downregulates NHE3 activity and expression in LLC-PK1 cells. Am J Physiol Ren Physiol 290(5):F997–1008. https://doi.org/10.1152/ajprenal.00322.2005

    Article  CAS  Google Scholar 

  31. Trepiccione F, Soukaseum C, Iervolino A, Petrillo F, Zacchia M, Schutz G, Eladari D, Capasso G, Hadchouel J (2016) A fate-mapping approach reveals the composite origin of the connecting tubule and alerts on "single-cell"-specific KO model of the distal nephron. Am J Physiol Ren Physiol 311(5):F901–F906. https://doi.org/10.1152/ajprenal.00286.2016

    Article  CAS  Google Scholar 

  32. Iervolino A, Trepiccione F, Petrillo F, Spagnuolo M, Scarfo M, Frezzetti D, De Vita G, De Felice M, Capasso G (2015) Selective dicer suppression in the kidney alters GSK3beta/beta-catenin pathways promoting a glomerulocystic disease. PLoS ONE 10(3):e0119142. https://doi.org/10.1371/journal.pone.0119142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Iervolino A, Prosperi F, De La Motte LR, Petrillo F, Spagnuolo M, D'Acierno M, Siccardi S, Perna AF, Christensen BM, Frische S, Capasso G, Trepiccione F (2020) Potassium depletion induces cellular conversion in the outer medullary collecting duct altering Notch signaling pathway. Sci Rep 10(1):5708. https://doi.org/10.1038/s41598-020-61882-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chambrey R, Trepiccione F (2015) Relative roles of principal and intercalated cells in the regulation of sodium balance and blood pressure. Curr Hypertens Rep 17(4):538. https://doi.org/10.1007/s11906-015-0538-0

    Article  CAS  PubMed  Google Scholar 

  35. Ji HL, Zhao R, Komissarov AA, Chang Y, Liu Y, Matthay MA (2015) Proteolytic regulation of epithelial sodium channels by urokinase plasminogen activator: cutting edge and cleavage sites. J Biol Chem 290(9):5241–5255. https://doi.org/10.1074/jbc.M114.623496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Staruschenko A, Palygin O, Ilatovskaya DV, Pavlov TS (2013) Epidermal growth factors in the kidney and relationship to hypertension. Am J Physiol Ren Physiol 305(1):F12–20. https://doi.org/10.1152/ajprenal.00112.2013

    Article  CAS  Google Scholar 

  37. Pavlov TS, Levchenko V, O'Connor PM, Ilatovskaya DV, Palygin O, Mori T, Mattson DL, Sorokin A, Lombard JH, Cowley AW Jr, Staruschenko A (2013) Deficiency of renal cortical EGF increases ENaC activity and contributes to salt-sensitive hypertension. J Am Soc Nephrol 24(7):1053–1062. https://doi.org/10.1681/ASN.2012080839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pidkovka N, Rao R, Mei S, Gong Y, Harris RC, Wang WH, Capdevila JH (2013) Epoxyeicosatrienoic acids (EETs) regulate epithelial sodium channel activity by extracellular signal-regulated kinase 1/2 (ERK1/2)-mediated phosphorylation. J Biol Chem 288(7):5223–5231. https://doi.org/10.1074/jbc.M112.407981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ward PE, Chow A, Drapeau G (1991) Metabolism of bradykinin agonists and antagonists by plasma aminopeptidase P. Biochem Pharmacol 42(4):721–727. https://doi.org/10.1016/0006-2952(91)90028-4

    Article  CAS  PubMed  Google Scholar 

  40. Drendel V, Heckelmann B, Chen CY, Weisser J, Espadas G, Schell C, Sabido E, Werner M, Jilg CA, Schilling O (2017) Proteome profiling of clear cell renal cell carcinoma in von Hippel–Lindau patients highlights upregulation of Xaa-Pro aminopeptidase-1, an anti-proliferative and anti-migratory exoprotease. Oncotarget 8(59):100066–100078. https://doi.org/10.18632/oncotarget.21929

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mamenko M, Zaika O, Pochynyuk O (2014) Direct regulation of ENaC by bradykinin in the distal nephron. Implications for renal sodium handling. Curr Opin Nephrol Hypertens 23(2):122–129. https://doi.org/10.1097/01.mnh.0000441053.81339.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Damiano S, Trepiccione F, Ciarcia R, Scanni R, Spagnuolo M, Manco L, Borrelli A, Capasso C, Mancini R, Schiattarella A, Iervolino A, Zacchia E, Bata-Csere A, Florio S, Anastasio P, Pollastro R, Mancini A, Capasso G (2013) A new recombinant MnSOD prevents the cyclosporine A-induced renal impairment. Nephrol Dial Transplant 28(8):2066–2072. https://doi.org/10.1093/ndt/gft020

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mrs Brioni Elena, research nurse in OSR, for performing the saline load tests on patients.

Funding

This work was supported by PRIN 2006 no 2006065339.

Author information

Authors and Affiliations

Authors

Contributions

CL and PM performed visits of patients and acute salt load test, VM performed the proteomic experiments, VM and AB analysed the data, participated in the discussion on data interpretation and wrote the manuscript, LZ collected biological samples and implemented the clinical database, LZ, CL and PM revised the manuscript. GC proposed the experiments, followed the project in its phases and reviewed the manuscript, FT and MZ participated in the discussion on data interpretation.

Corresponding authors

Correspondence to Chiara Lanzani or Angela Bachi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The study was approved by the Ethics Committee of the San Raffaele Hospital, Milan (Italy).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

The participants signed informed consent regarding publishing their data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1095 kb)

Supplementary file2 (DOCX 1494 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matafora, V., Lanzani, C., Zagato, L. et al. Urinary proteomics reveals key markers of salt sensitivity in hypertensive patients during saline infusion. J Nephrol 34, 739–751 (2021). https://doi.org/10.1007/s40620-020-00877-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-020-00877-z

Keywords

Navigation