Skip to main content

Advertisement

Log in

Can the positive association of osteocalcin with testosterone be unmasked when the preeminent hypothalamic–pituitary regulation of testosterone production is impaired? The model of spinal cord injury

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Osteocalcin (OCN), released from the bone matrix during the resorption phase, in its undercarboxylated form, stimulates testosterone (T) biosynthesis in mouse and a loss-of-function mutation of its receptor was associated with hypergonadotropic hypogonadism in humans. Nevertheless, when population-based studies have explored the OCN-T association, conflicting results have been reported. Hypothesizing that the evidence of a positive association between OCN and T could have been hindered by the preeminent role of a well-functioning hypothalamus–pituitary axis in promoting T biosynthesis, we explored this association in men with chronic spinal cord injury (SCI), exhibiting high prevalence of non-hypergonadotropic androgen deficiency.

Methods

Fifty-five consecutive men with chronic SCI underwent clinical/biochemical evaluations, including measurements of total T (TT), OCN and 25(OH)D levels. Free T (FT) levels were calculated by the Vermeulen formula. Comorbidity was scored by Charlson comorbidity index (CCI).

Results

A biochemical androgen deficiency (TT < 300 ng/dL) was observed in 15 patients (27.3%). TT was positively correlated with OCN, 25(OH)D and leisure time physical activity and negatively correlated with age, BMI and CCI. OCN was also positively correlated with calculated FT and negatively correlated with BMI and HOMA-IR. At the multiple linear regression analyses, a positive association of OCN with TT and calculated FT persisted after adjustment for confounders.

Conclusions

The positive association here found between OCN and T levels in men with chronic SCI reinforces the notion that a bone–testis axis is also functioning in humans and suggests that it can be unmasked when the preeminent hypothalamic–pituitary regulation of T production is impaired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Riggs BL, Khosla S, Melton LJ (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302

    Article  CAS  PubMed  Google Scholar 

  2. Neve A, Corrado A, Cantatore FP (2013) Osteocalcin: skeletal and extra-skeletal effects. J Cell Physiol 228:1149–1153

    Article  CAS  PubMed  Google Scholar 

  3. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C et al (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith CE et al (2011) Endocrine regulation of male fertility by the skeleton. Cell 144:796–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Oury F, Ferron M, Huizhen W, Confavreux C, Xu L, Lacombe J et al (2013) Osteocalcin regulates murine and human fertility through a pancreas–bone–testis axis. J Clin Invest 123:2421–2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Karsenty G, Oury F (2014) Regulation of male fertility by the bone-derived hormone osteocalcin. Mol Cell Endocrinol 382:521–526

    Article  CAS  PubMed  Google Scholar 

  7. Hannemann A, Breer S, Wallaschofski H, Nauck M, Baumeister SE, Barvencik F et al (2013) Osteocalcin is associated with testosterone in the general population and selected patients with bone disorders. Andrology 1:469–474

    Article  CAS  PubMed  Google Scholar 

  8. Liao M, Guo X, Yu X, Pang G, Zhang S, Li J et al (2013) Role of metabolic factors in the association between osteocalcin and testosterone in Chinese men. J Clin Endocrinol Metab 98:3463–3469

    Article  CAS  PubMed  Google Scholar 

  9. Yeap BB, Alfonso H, Chubb SA, Gauci R, Byrnes E, Beilby JP et al (2015) Higher serum undercarboxylated osteocalcin and other bone turnover markers are associated with reduced diabetes risk and lower estradiol concentrations in older men. J Clin Endocrinol Metab 100:63–71

    Article  CAS  PubMed  Google Scholar 

  10. Limonard EJ, van Schoor NM, de Jongh RT, Lips P, Fliers E, Bisschop PH (2015) Osteocalcin and the pituitary-gonadal axis in older men: a population-based study. Clin Endocrinol (Oxf) 82:753–759

    Article  CAS  Google Scholar 

  11. Kim HJ, Koo HS, Kim YS, Kim MJ, Kim KM, Joo NS et al (2017) The association of testosterone, sex hormone-binding globulin, and insulin-like growth factor-1 with bone parameters in Korean men aged 50 years or older. J Bone Miner Metab 35:659–665

    Article  CAS  PubMed  Google Scholar 

  12. Safarinejad MR (2001) Level of injury and hormone profiles in spinal cord-injured men. Urology 58:671–676

    Article  CAS  PubMed  Google Scholar 

  13. Kostovski E, Iversen PO, Birkeland K, Torjesen PA, Hjeltnes N (2008) Decreased levels of testosterone and gonadotrophins in men with long-standing tetraplegia. Spinal Cord 46:559–564

    Article  CAS  PubMed  Google Scholar 

  14. Durga A, Sepahpanah F, Regozzi M, Hastings J, Crane DA (2011) Prevalence of testosterone deficiency after spinal cord injury. PM R 3:929–932

    Article  PubMed  Google Scholar 

  15. Bauman WA, Fountaine MF, Spungen AM (2014) Age-related prevalence of low testosterone in men with spinal cord injury. J Spinal Cord Med 37:32–39

    Article  PubMed  PubMed Central  Google Scholar 

  16. Barbonetti A, Vassallo MR, Pacca F, Cavallo F, Costanzo M, Felzani G et al (2014) Correlates of low testosterone in men with chronic spinal cord injury. Andrology 2:721–728

    Article  CAS  PubMed  Google Scholar 

  17. Barbonetti A, Vassallo MRC, Cotugno M, Felzani G, Francavilla S, Francavilla F (2016) Low testosterone and non-alcoholic fatty liver disease: evidence for their independent association in men with chronic spinal cord injury. J Spinal Cord Med 39:443–449

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bauman WA, Spungen AM (2001) Carbohydrate and lipid metabolism in chronic spinal cord injury. J Spinal Cord Med 24:266–277

    Article  CAS  PubMed  Google Scholar 

  19. Jones LM, Legge M, Goulding A (2003) Healthy body mass index values often underestimate body fat in men with spinal cord injury. Arch Phys Med Rehabil 84:1068–1071

    Article  PubMed  Google Scholar 

  20. Charlson M, Szatrowsk TP, Peterson J, Gold J (1994) Validation of a combined comorbidity index. J Clin Epidemiol 47:1245–1251

    Article  CAS  PubMed  Google Scholar 

  21. Kirshblum SC, Burns SP, Biering-Sorensen F, Donovan W, Graves DE, Jha A et al (2011) International standards for neurological classification of spinal cord injury (Revised 2011). J Spinal Cord Med 34:535–546

    Article  PubMed  PubMed Central  Google Scholar 

  22. Barbonetti A, Vassallo MRC, Felzani G, Francavilla S, Francavilla F (2016) Association between 25(OH)-vitamin D and testosterone levels: evidence from men with chronic spinal cord injury. J Spinal Cord Med 39:246–252

    Article  PubMed  PubMed Central  Google Scholar 

  23. Barbonetti A, Sperandio A, Micillo A, D’Andrea S, Pacca F, Felzani G et al (2016) Independent association of vitamin D with physical function in people with chronic spinal cord injury. Arch Phys Med Rehabil 97:726–732

    Article  PubMed  Google Scholar 

  24. Barbonetti A, D’Andrea S, Martorella A, Felzani G, Francavilla S, Francavilla F (2018) Low vitamin D levels are independent predictors of 1-year worsening in physical function in people with chronic spinal cord injury: a longitudinal study. Spinal Cord. https://doi.org/10.1038/s41393-017-0058-7

    Article  PubMed  Google Scholar 

  25. Barbonetti A, Cavallo F, D’Andrea S, Muselli M, Felzani G, Francavilla S et al (2017) Lower vitamin D levels are associated with depression in people with chronic spinal cord injury. Arch Phys Med Rehabil 98:940–946

    Article  PubMed  Google Scholar 

  26. Ginis KA, Hicks AL, Latimer AE, Warburton DE, Bourne C, Ditor DS et al (2011) The development of evidence-informed physical activity guidelines for adults with spinal cord injury. Spinal Cord 49:1088–1096

    Article  PubMed  Google Scholar 

  27. Vermeulen A, Verdonck L, Kaufman JM (1999) A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab 84:3666–3672

    Article  CAS  PubMed  Google Scholar 

  28. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and b cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  CAS  PubMed  Google Scholar 

  29. Bhasin S, Cunningham GR, Hayes FJ, Matsumoto AM, Snyder PJ, Swerdloff RS, Task Force, Endocrine Society et al (2010) Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 95:2536–2559

    Article  CAS  PubMed  Google Scholar 

  30. Kanazawa I, Tanaka K, Ogawa N, Yamauchi M, Yamaguchi T, Sugimoto T (2013) Undercarboxylated osteocalcin is positively associated with free testosterone in male patients with type 2 diabetes mellitus. Osteoporos Int 24:1115–1119

    Article  CAS  PubMed  Google Scholar 

  31. Foresta C, Strapazzon G, De Toni L, Gianesello L, Bruttocao A, Scarda A et al (2011) Androgens modulate osteocalcin release by human visceral adipose tissue. Clin Endocrinol (Oxf) 75:64–69

    Article  CAS  Google Scholar 

  32. Samavat J, Facchiano E, Cantini G, Di Franco A, Alpigiano G, Poli G et al (2014) Osteocalcin increase after bariatric surgery predicts androgen recovery in hypogonadal obese males. Int J Obes (Lond) 38:357–363

    Article  CAS  Google Scholar 

  33. Kirmani S, Atkinson EJ, Melton LJ, Riggs BL, Amin S, Khosla S (2011) Relationship of testosterone and osteocalcin levels during growth. J Bone Miner Res 26:2212–2216

    Article  CAS  PubMed  Google Scholar 

  34. Bauman WA, La Fountaine MF, Cirnigliaro CM, Kirshblum SC, Spungen AM (2016) Provocative stimulation of the hypothalamic–pituitary–testicular axis in men with spinal cord injury. Spinal Cord 54:961–966

    Article  CAS  PubMed  Google Scholar 

  35. Sullivan SD, Nash MS, Tefera E, Tinsley E, Blackman MR, Groah S (2017) Prevalence and etiology of hypogonadism in young men with chronic spinal cord injury: a cross-sectional analysis from two university-based rehabilitation centers. PM R 9:751–760

    Article  PubMed  Google Scholar 

  36. Corona G, Bianchini S, Sforza A, Vignozzi L, Maggi M (2015) Hypogonadism as a possible link between metabolic diseases and erectile dysfunction in aging men. Hormones (Athens) 14:569–578

    Google Scholar 

  37. Laughton GE, Buchholz AC, Martin Ginis KA, Goy RE (2009) Lowering body mass index cutoffs better identifies obese persons with spinal cord injury. Spinal Cord 47:757–762

    Article  CAS  PubMed  Google Scholar 

  38. Alfadda AA, Masood A, Shaik SA, Dekhil H, Goran M (2013) Association between osteocalcin, metabolic syndrome, and cardiovascular risk factors: role of total and undercarboxylated osteocalcin in patients with type 2 diabetes. Int J Endocrinol 2013:197519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Patti A, Gennari L, Merlotti D, Dotta F, Nuti R (2013) Endocrine actions of osteocalcin. Int J Endocrinol 2013:846480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gundberg CM, Nieman SD, Abrams S, Rosen H (1998) Vitamin K status and bone health: an analysis of methods for determination of undercarboxylated osteocalcin. J Clin Endocrinol Metab 83:3258–3266

    CAS  PubMed  Google Scholar 

  41. Huhtaniemi IT, Tajar A, Lee DM, O’Neill TW, Finn JD, Bartfai G et al (2012) EMAS Group. Comparison of serum testosterone and estradiol measurements in 3174 European men using platform immunoassay and mass spectrometry; relevance for the diagnosis in aging men. Eur J Endocrinol 166:983–991

    Article  CAS  PubMed  Google Scholar 

  42. Gater DR Jr, Farkas GJ, Berg AS, Castillo C (2018) Prevalence of metabolic syndrome in veterans with spinal cord injury. J Spinal Cord Med. https://doi.org/10.1080/10790268.2017.1423266

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sabour H, Norouzi Javidan A, Latifi S, Larijani B, Shidfar F, Vafa MR et al (2014) Bone biomarkers in patients with chronic traumatic spinal cord injury. Spine J 14:1132–1138

    Article  PubMed  Google Scholar 

  44. Karapolat I, Karapolat HU, Kirazli Y, Capaci K, Akkoc Y, Kumanlioglu K (2015) Longitudinal study of bone loss in chronic spinal cord injury patients. J Phys Ther Sci 27:1429–1433

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kannisto M, Alaranta H, Merikanto J, Kröger H, Kärkkäinen J (1998) Bone mineral status after pediatric spinal cord injury. Spinal Cord 36:641–646

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Barbonetti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbonetti, A., D’Andrea, S., Samavat, J. et al. Can the positive association of osteocalcin with testosterone be unmasked when the preeminent hypothalamic–pituitary regulation of testosterone production is impaired? The model of spinal cord injury. J Endocrinol Invest 42, 167–173 (2019). https://doi.org/10.1007/s40618-018-0897-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-018-0897-x

Keywords

Navigation