Skip to main content

Advertisement

Log in

Body composition and circulating estradiol are the main bone density predictors in healthy young and middle-aged men

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Current fracture risk assessment options in men call for improved evaluation strategies. Recent research directed towards non-classic bone mass determinants have often yielded scarce and conflicting results. We aimed at investigating the impact of novel potential bone mass regulators together with classic determinants of bone status in healthy young and middle-aged men.

Methods

Anthropometric measurements, all-site bone mineral density (BMD) and body composition parameters assessed by dual-energy X-ray absorptiometry and also serum concentrations of (1) the adipokines leptin and resistin, (2) vitamin D and parathormone (PTH), (3) sex hormone binding globulin (SHBG), total testosterone and estradiol (free testosterone was also calculated) and (4) C-terminal telopeptide of type I collagen (CTx) were obtained from 30 apparently healthy male volunteers aged 20–65 years enrolled in this cross-sectional study.

Results

Only lean mass (LM) and total estradiol independently predicted BMD in men in multiple regression analysis, together explaining 49% (p ≤ 0.001) of whole-body BMD variance. Hierarchical regression analysis with whole-body BMD as outcome variable demonstrated that the body mass index (BMI) beta coefficient became nonsignificant when LM was added to the model. Adipokines, fat parameters, testosterone (total and free), SHBG, PTH and vitamin D were not independently associated with BMD or CTx.

Conclusions

The present study shows that LM and sex hormones—namely estradiol—are the main determinants of bone mass in young and middle-aged men. The effects of BMI upon BMD seem to be largely mediated by LM. Lifestyle interventions should focus on preserving LM in men for improved bone outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adler RA (2014) Osteoporosis in men: a review. Bone Res 2:14001

    Article  PubMed  PubMed Central  Google Scholar 

  2. Watts NB, Adler RA, Bilezikian JP et al (2012) Osteoporosis in men: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 97(6):1802–1822

    Article  PubMed  CAS  Google Scholar 

  3. Haentjens P, Magaziner J, Colon-Emeric CS et al (2010) Meta-analysis: excess mortality after hip fracture among older women and men. Ann Intern Med 152(6):380–390

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lewiecki EM, Binkley N (2016) What we don’t know about osteoporosis. J Endocrinol Invest 39(5):491–493

    Article  PubMed  CAS  Google Scholar 

  5. Pepe J, Cipriani C, Cilli M, Colangelo L, Minisola S (2016) Adipokines and bone metabolism: an interplay to untangle. J Endocrinol Invest 39(11):1359–1361

    Article  PubMed  CAS  Google Scholar 

  6. Ho-Pham LT, Nguyen UD, Nguyen TV (2014) Association between lean mass, fat mass, and bone mineral density: a meta-analysis. J Clin Endocrinol Metab 99(1):30–38

    Article  PubMed  CAS  Google Scholar 

  7. Biver E, Salliot C, Combescure C et al (2011) Influence of adipokines and ghrelin on bone mineral density and fracture risk: a systematic review and meta-analysis. J Clin Endocrinol Metab 96(9):2703–2713

    Article  PubMed  CAS  Google Scholar 

  8. Bjornerem A, Emaus N, Berntsen GK et al (2007) Circulating sex steroids, sex hormone-binding globulin, and longitudinal changes in forearm bone mineral density in postmenopausal women and men: the Tromso study. Calcif Tissue Int 81(2):65–72

    Article  PubMed  CAS  Google Scholar 

  9. Kim YM, Kim SH, Kim S, Yoo JS, Choe EY, Won YJ (2016) Variations in fat mass contribution to bone mineral density by gender, age, and body mass index: the Korea National Health and Nutrition Examination Survey (KNHANES) 2008–2011. Osteoporos Int 27(8):2543–2554

    Article  PubMed  CAS  Google Scholar 

  10. Khosla S (2010) Update in male osteoporosis. J Clin Endocrinol Metab 95:3–10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Gennari L, Khosla S, Bilezikian JP (2008) Estrogen and fracture risk in men. J Bone Miner Res 23:1548–1551

    Article  PubMed  Google Scholar 

  12. Menzel J, Di Giuseppe R, Biemann R et al (2016) Association between omentin-1, adiponectin and bone health under consideration of osteoprotegerin as possible mediator. J Endocrinol Invest 39(11):1347–1355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Cauley JA, Ewing SK, Taylor BC et al (2010) Sex steroid hormones in older men: longitudinal associations with 4.5-year change in hip bone mineral density–the osteoporotic fractures in men study. J Clin Endocrinol Metab 95(9):4314–4323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Mellstrom D, Vandenput L, Mallmin H et al (2008) Older men with low serum estradiol and high serum SHBG have an increased risk of fractures. J Bone Miner Res 23(10):1552–1560

    Article  PubMed  Google Scholar 

  15. Hoppe E, Bouvard B, Royer M, Audran M, Legrand E (2010) Sex hormone-binding globulin in osteoporosis. Jt Bone Spine 77(4):306–312

    Article  CAS  Google Scholar 

  16. Vermeulen A, Verdonck L, Kaufman JM (1999) A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab 84(10):3666–3672

    Article  PubMed  CAS  Google Scholar 

  17. Rosner W (2015) Free estradiol and sex hormone-binding globulin. Steroids 99(Pt A):113–116

    Article  PubMed  CAS  Google Scholar 

  18. Ahmad S, Harris T, Limb E (2015) Evaluation of reliability and validity of the General Practice Physical Activity Questionnaire (GPPAQ) in 60–74 year old primary care patients. BMC Family Pract 16:113

    Article  Google Scholar 

  19. Benetos A, Zervoudaki A, Kearney-Schwartz A et al (2009) Effects of lean and fat mass on bone mineral density and arterial stiffness in elderly men. Osteoporos Int 20(8):1385–1391

    Article  PubMed  CAS  Google Scholar 

  20. Zofkova I (2008) Hormonal aspects of the muscle-bone unit. Physiol Res 57(Suppl 1):S159–S169

    PubMed  CAS  Google Scholar 

  21. Karasik D, Kiel DP (2008) Genetics of the musculoskeletal system: a pleiotropic approach. J Bone Miner Res 23(6):788–802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Frost HM, Schonau E (2000) The “muscle-bone unit” in children and adolescents: a 2000 overview. J Pediatr Endocrinol Metab 13(6):571–590

    Article  PubMed  CAS  Google Scholar 

  23. Verschueren S, Gielen E, O’Neill TW et al (2013) Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. Osteoporos Int 24(1):87–98

    Article  PubMed  CAS  Google Scholar 

  24. Ohkawara K, Tanaka S, Miyachi M, Ishikawa-Takata K, Tabata I (2007) A dose-response relation between aerobic exercise and visceral fat reduction: systematic review of clinical trials. Int J Obes 31(12):1786–1797

    Article  CAS  Google Scholar 

  25. Palermo A, Tuccinardi D, Defeudis G et al (2016) BMI and BMD: the potential interplay between obesity and bone fragility. Int J Environ Res Public Health 13(6):e544

    Article  PubMed  CAS  Google Scholar 

  26. Yoo HJ, Park MS, Yang SJ et al (2012) The differential relationship between fat mass and bone mineral density by gender and menopausal status. J Bone Miner Metab 30(1):47–53

    Article  PubMed  Google Scholar 

  27. Laslett LL, Just Nee Foley SJ, Quinn SJ, Winzenberg TM, Jones G (2012) Excess body fat is associated with higher risk of vertebral deformities in older women but not in men: a cross-sectional study. Osteoporos Int 23(1):67–74

    Article  PubMed  CAS  Google Scholar 

  28. Pluijm SM, Visser M, Smit JH, Popp-Snijders C, Roos JC, Lips P (2001) Determinants of bone mineral density in older men and women: body composition as mediator. J Bone Miner Res 16(11):2142–2151

    Article  PubMed  CAS  Google Scholar 

  29. Bhupathiraju SN, Dawson-Hughes B, Hannan MT, Lichtenstein AH, Tucker KL (2011) Centrally located body fat is associated with lower bone mineral density in older Puerto Rican adults. Am J Clin Nutr 94(4):1063–1070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zillikens MC, Uitterlinden AG, van Leeuwen JP et al (2010) The role of body mass index, insulin, and adiponectin in the relation between fat distribution and bone mineral density. Calcif Tissue Int 86(2):116–125

    Article  PubMed  CAS  Google Scholar 

  31. Peng XD, Xie H, Zhao Q, Wu XP, Sun ZQ, Liao EY (2008) Relationships between serum adiponectin, leptin, resistin, visfatin levels and bone mineral density, and bone biochemical markers in Chinese men. Clin Chim Acta 387(1–2):31–35

    Article  PubMed  CAS  Google Scholar 

  32. Beckers S, Zegers D, Van Camp JK et al (2013) Resistin polymorphisms show associations with obesity, but not with bone parameters in men: results from the Odense Androgen Study. Mol Biol Rep 40(3):2467–2472

    Article  PubMed  CAS  Google Scholar 

  33. Oh KW, Lee WY, Rhee EJ et al (2005) The relationship between serum resistin, leptin, adiponectin, ghrelin levels and bone mineral density in middle-aged men. Clin Endocrinol (Oxf) 63(2):131–138

    Article  CAS  Google Scholar 

  34. Burnett-Bowie SA, McKay EA, Lee H, Leder BZ (2009) Effects of aromatase inhibition on bone mineral density and bone turnover in older men with low testosterone levels. J Clin Endocrinol Metab 94(12):4785–4792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Ward KA, Pye SR, Adams JE et al (2011) Influence of age and sex steroids on bone density and geometry in middle-aged and elderly European men. Osteoporos Int 22(5):1513–1523

    Article  PubMed  CAS  Google Scholar 

  36. Chapurlat RD, Garnero P, Breart G, Meunier PJ, Delmas PD (2000) Serum estradiol and sex hormone-binding globulin and the risk of hip fracture in elderly women: the EPIDOS study. J Bone Miner Res 15(9):1835–1841

    Article  PubMed  CAS  Google Scholar 

  37. Vandenput L, Lorentzon M, Sundh D et al (2014) Serum estradiol levels are inversely associated with cortical porosity in older men. J Clin Endocrinol Metab 99(7):E1322–E1326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Argoud T, Boutroy S, Claustrat B, Chapurlat R, Szulc P (2014) Association between sex steroid levels and bone microarchitecture in men: the STRAMBO study. J Clin Endocrinol Metab 99(4):1400–1410

    Article  PubMed  CAS  Google Scholar 

  39. Boonen S, Pye SR, O’Neill TW et al (2011) Influence of bone remodelling rate on quantitative ultrasound parameters at the calcaneus and DXA BMDa of the hip and spine in middle-aged and elderly European men: the European Male Ageing Study (EMAS). Eur J Endocrinol 165(6):977–986

    Article  PubMed  CAS  Google Scholar 

  40. Vanderschueren D, Laurent MR, Claessens F et al (2014) Sex steroid actions in male bone. Endocr Rev 35(6):906–960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Bjornerem A, Ahmed LA, Joakimsen RM et al (2007) A prospective study of sex steroids, sex hormone-binding globulin, and non-vertebral fractures in women and men: the Tromso Study. Eur J Endocrinol 157(1):119–125

    Article  PubMed  CAS  Google Scholar 

  42. Ensrud KE, Taylor BC, Paudel ML et al (2009) Serum 25-hydroxyvitamin D levels and rate of hip bone loss in older men. J Clin Endocrinol Metab 94(8):2773–2780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Szulc P, Munoz F, Marchand F, Chapuy MC, Delmas PD (2003) Role of vitamin D and parathyroid hormone in the regulation of bone turnover and bone mass in men: the MINOS study. Calcif Tissue Int 73(6):520–523

    Article  PubMed  CAS  Google Scholar 

  44. Curtis JR, Ewing SK, Bauer DC et al (2012) Association of intact parathyroid hormone levels with subsequent hip BMD loss: the Osteoporotic Fractures in Men (MrOS) Study. J Clin Endocrinol Metab 97(6):1937–1944

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Kmiec P, Zmijewski M, Waszak P, Sworczak K, Lizakowska-Kmiec M (2014) Vitamin D deficiency during winter months among an adult, predominantly urban, population in Northern Poland. Endokrynol Pol 65(2):105–113

    Article  PubMed  Google Scholar 

  46. Wanby P, Nobin R, Von SP, Brudin L, Carlsson M (2016) Serum levels of the bone turnover markers dickkopf-1, sclerostin, osteoprotegerin, osteopontin, osteocalcin and 25-hydroxyvitamin D in Swedish geriatric patients aged 75 years or older with a fresh hip fracture and in healthy controls. J Endocrinol Invest 39(8):855–863

    Article  PubMed  CAS  Google Scholar 

  47. Barrett-Connor E, Laughlin GA et al (2012) The association of concurrent vitamin D and sex hormone deficiency with bone loss and fracture risk in older men: the osteoporotic fractures in men (MrOS) study. J Bone Miner Res 27(11):2306–2313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Mr. Valentin Zaharia and Mr. Adrian Aancute for excellent DXA technical work.

Funding

This work was financed through an internal grant (31587/23.12.2015) from the University of Medicine and Pharmacy “Gr. T. Popa” Iasi, Romania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Branisteanu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

All procedures performed in this research involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilha, S.C., Branisteanu, D., Buzduga, C. et al. Body composition and circulating estradiol are the main bone density predictors in healthy young and middle-aged men. J Endocrinol Invest 41, 995–1003 (2018). https://doi.org/10.1007/s40618-018-0826-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-018-0826-z

Keywords

Navigation