Skip to main content

Advertisement

Log in

Hyperhomocysteinemia in acute iatrogenic hypothyroidism: the relevance of thyroid autoimmunity

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Hyperhomocysteinemia is a known cardiovascular risk factor and a key player in the inflammatory activation of autoimmune diseases. Hashimoto’s thyroiditis (HT) is the leading cause of hypothyroidism which, in itself, has been associated with a significant raise of homocysteine (Hcy) levels and increased cardiovascular risk. Our aim was to assess the impact of HT on Hcy levels in patients with acute hypothyroidism.

Methods

We prospectively enrolled 121 patients (mean age: 46 years, F/M = 102/19) with acute post-surgical hypothyroidism. Based on the presence of anti-thyroid antibodies and the histological description of an inflammatory infiltrate, 26 and 95 patients were classified as HT and non-HT, respectively. Several parameters including thyroid-stimulating hormone (TSH), levels of serum free T3 and free T4, weight, glucose levels, total cholesterol, creatinine, vitamin B12, ferritin and erythrocyte sedimentation rate were obtained from all patients and correlated with Hcy levels.

Results

Median Hcy level in the whole cohort was 16.8 µmol/L (normal values: < 12 µmol/l). Among all parameters analysed, only Hcy levels were significantly different between HT and non-HT patients (median Hcy = 19.7 vs 16.2 µmol/L, respectively; p = 0.018, Mann–Whitney U test). Analysis of covariance showed the presence of HT to be the strongest predictor of Hcy levels (coefficient = 0.25534, p = 0.001). Serum TSH was not significantly associated with Hcy levels (p = 0.943).

Conclusion

In patients with iatrogenic hypothyroidism, those with HT have significantly higher Hcy levels than those without HT. The increase of Hcy levels appears to be mainly determined by the HT-related immune-inflammatory condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. De Bree A, Verschuren WM, Kromhout D, Kluijtmans LAJ, Blom HJ (2002) Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary heart disease. Pharmacol Rev 54:599–618

    Article  PubMed  Google Scholar 

  2. Lazzerini PE, Capecchi PL, Selvi E, Lorenzini S, Bisogno S, Galeazzi M, Laghi Pasini F (2007) Hyperhomocysteinemia, inflammation and autoimmunity. Autoimmun Rev 6:503–509

    Article  PubMed  CAS  Google Scholar 

  3. Schroecksnadel K, Frick B, Wirleitner B, Winkler C, Schennach H, Fuchs D (2004) Moderate hyperhomocysteinemia and immune activation. Curr Pharm Biotechnol 5:107–118

    Article  PubMed  CAS  Google Scholar 

  4. Zhou Y, Chen Y, Cao X, Liu C, Xie Y (2014) Association between plasma homocysteine status and hypothyroidism: a meta-analysis. Int J Clin Exp Med 7:4544–4553

    PubMed  PubMed Central  Google Scholar 

  5. Monzani F, Caraccio N, Kozàkowà M, Dardano A, Vittone F, Virdis A, Taddei S, Palombo C, Ferrannini E (2004) Effect of levothyroxine replacement on lipid profile and intima-media thickness in subclinical hypothyroidism: a double-blind, placebo- controlled study. J Clin Endocrinol Metab 89:2099–2106

    Article  PubMed  CAS  Google Scholar 

  6. Lien EA, Nedrebø BG, Varhaug JE, Nygard O, Aakvaag A, Ueland PM (2000) Plasma total homocysteine levels during short-term iatrogenic hypothyroidism. J Clin Endocrinol Metab 85:1049–1053

    PubMed  CAS  Google Scholar 

  7. Orzechowska-Pawilojc A, Sworczak K, Lewczuk A, Babinska A (2007) Homocysteine, folate and cobalamin levels in hypothyroid women before and after treatment. Endocr J 54:471–476

    Article  PubMed  CAS  Google Scholar 

  8. Avila MA, Berasain C, Prieto J, Mato JM, García-Trevijano ER, Corrales FJ (2005) Influence of impaired liver methionine metabolism on the development of vascular disease and inflammation. Curr Med Chem Cardiovasc Hematol Agents 3:267–281

    Article  PubMed  CAS  Google Scholar 

  9. Ayav A, Alberto JM, Barbe F, Brunaud L, Gerard P, Merten M, Gueant JL (2005) Defective remethylation of homocysteine is related to decreased synthesis of coenzymes B2 in thyroidectomized rats. Amino Acids 28:37–43

    Article  PubMed  CAS  Google Scholar 

  10. Caturegli P, De Remigis A, Rose NR (2014) Hashimoto thyroiditis: clinical and diagnostic criteria. Autoimmun Rev 13:391–397

    Article  PubMed  CAS  Google Scholar 

  11. Hak AE, Pols HA, Visser TJ, Drexhage HA, Hofman A, Witteman JC (2000) Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam Study. Ann Intern Med 132:270–278

    Article  PubMed  CAS  Google Scholar 

  12. Tryfonopoulos D, Anastasiou E, Protogerou A, Papaioannou T, Lily K, Dagre A, Souvatzoglou E, Papamichael C, Alevizaki M, Lekakis J (2005) Arterial stiffness in type 1 diabetes mellitus is aggravated by autoimmune thyroid disease. J Endocrinol Invest 28:616–622

    Article  PubMed  CAS  Google Scholar 

  13. Topaloglu O, Gokay F, Kucukler K, Burnik FS, Mete T, Yavuz HC, Berker D, Guler S (2013) Is autoimmune thyroiditis a risk factor for early atherosclerosis in premenopausal women even if in euthyroid status? Endocrine 44:145–151

    Article  PubMed  CAS  Google Scholar 

  14. Ciccone MM, De Pergola G, Porcelli MT, Scicchitano P, Caldarola P, Iacoviello M, Pietro G, Giorgino F, Favale S (2010) Increased carotid IMT in overweight and obese women affected by Hashimoto’s thyroiditis: an adiposity and autoimmune linkage? BMC Cardiovasc Disord 10:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. İşgüven P, Gündüz Y, Kılıç M (2016) Effects of thyroid autoimmunity on early atherosclerosis in euthyroid girls with Hashimoto’s thyroiditis. J Clin Res Pediatr Endocrinol 8:150–156

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang YP, Lin HP, Chen HM, Kuo YS, Lang MJ, Sun A (2014) Hemoglobin, iron, and vitamin B12 deficiencies and high blood homocysteine levels in patients with anti-thyroid autoantibodies. J Formos Med Assoc 113:155–160

    Article  PubMed  CAS  Google Scholar 

  17. Carbotta G, Tartaglia F, Giuliani A, Carbotta S, Tromba L, Jacomelli I, De Anna L, Fumarola A (2017) Cardiovascular risk in chronic autoimmune thyroiditis and subclinical hypothyroidism patients. A cluster analysis. Int J Cardiol 230:115–119

    Article  PubMed  Google Scholar 

  18. Owecki M, Dorszewska J, Sawicka-Gutaj N, Oczkowska A, Owecki MK, Michalak M, Fischbach J, Kozubski W, Ruchała M (2014) Serum homocysteine levels are decreased in levothyroxine-treated women with autoimmune thyroiditis. BMC Endocr Disord 14:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zhang Q, Li S, Li L, Li Q, Ren K, Sun X, Li J (2016) Metformin treatment and homocysteine: a systematic review and meta-analysis of randomized controlled trials. Nutrients 8(12):E798

    Article  PubMed  CAS  Google Scholar 

  20. Hirschowitz BI, Worthington J, Mohnen J (2008) Vitamin B12 deficiency in hypersecretors during long-term acid suppression with proton pump inhibitors. Aliment Pharmacol Ther 27:1110–1121

    Article  PubMed  CAS  Google Scholar 

  21. Sahebkar A, Pirro M, Reiner Ž, Cicero A, Ferretti G, Simental-Mendía M, Simental-Mendía LE (2016) A systematic review and meta-analysis of controlled trials on the effects of statin and fibrate therapies on plasma homocysteine levels. Curr Med Chem 23:4490–4503

    Article  PubMed  CAS  Google Scholar 

  22. Cicone F, Papa A, Lauri C, Tofani A, Virili C, Centanni M, Scopinaro F, Annibale B (2015) Thyro-gastric autoimmunity in patients with differentiated thyroid cancer: a prospective study. Endocrine 49:163–169

    Article  PubMed  CAS  Google Scholar 

  23. Rho MH, Kim DW, Hong HP, Park YM, Kwon MJ, Jung SJ, Kim YW, Kang T (2012) Diagnostic value of antithyroid peroxidase antibody for incidental autoimmune thyroiditis based on histopathologic results. Endocrine 42:647–652

    Article  PubMed  CAS  Google Scholar 

  24. Rago T, Chiovato L, Grasso L, Pinchera A, Vitti P (2001) Thyroid ultrasonography as a tool for detecting thyroid autoimmune diseases and predicting thyroid dysfunction in apparently healthy subjects. J Endocrinol Invest 24:763–769

    Article  PubMed  CAS  Google Scholar 

  25. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov EBN, Csaki F (eds) 2nd International Symposium on Information Theory and Control. Akademia Kiado, Budapest, pp 267–281

    Google Scholar 

  26. Williams DA (1987) Generalized linear model diagnostics using the deviance and single case deletions. Appl Stat 36:181–191

    Article  Google Scholar 

  27. Cappola AR, Ladenson PW (2003) Hypothyroidism and atherosclerosis. J Clin Endocrinol Metab 88:2438–2444

    Article  PubMed  CAS  Google Scholar 

  28. La Vignera S, Condorelli R, Vicari E, Calogero AE (2012) Endothelial dysfunction and subclinical hypothyroidism: a brief review. J Endocrinol Invest 35:96–103

    PubMed  Google Scholar 

  29. Narang M, Singh M, Dange S (2016) Serum homocysteine, vitamin B12 and folic acid levels in patients with metabolic syndrome. J Assoc Physicians India 64:22–26

    PubMed  Google Scholar 

  30. Sreckovic B, Sreckovic VD, Soldatovic I, Colak E, Sumarac-Dumanovic M, Janeski H, Janeski N, Gacic J, Mrdovic I (2017) Homocysteine is a marker for metabolic syndrome and atherosclerosis. Diabetes Metab Syndr 11:179–182

    Article  PubMed  Google Scholar 

  31. Cho SJ, Lee HA, Park BH, Ha EH, Kim YJ, Park EA, Park H (2016) Combined effect of folate and adiposity on homocysteine in children at three years of age. Nutr Res Pract 10:74–80

    Article  PubMed  CAS  Google Scholar 

  32. Chaker L, Baumgartner C, den Elzen WP et al (2015) Subclinical hypothyroidism and the risk of stroke events and fatal stroke: an individual participant data analysis. J Clin Endocrinol Metab 100:2181–2191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Wald DS, Law M, Morris JK (2002) Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 325:1202

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hankey GJ, Eikelboom JW (2005) Homocysteine and stroke. Lancet 365:194–196

    Article  PubMed  Google Scholar 

  35. Jabbar A, Pingitore A, Pearce SH, Zaman A, Pingitore A, Pearce SH (2017) Thyroid hormones and cardiovascular disease. Nat Rev Cardiol 14:39–55

    Article  PubMed  CAS  Google Scholar 

  36. Monteiro R, Azevedo I (2010) Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm. https://doi.org/10.1155/2010/289645

    Article  PubMed  PubMed Central  Google Scholar 

  37. Abahji TN, Nill L, Ide N, Keller C, Hoffmann U, Weiss N (2007) Acute hyperhomocysteinemia induces microvascular and macrovascular endothelial dysfunction. Arch Med Res 38:411–416

    Article  PubMed  CAS  Google Scholar 

  38. An JH, Song KH, Kim DL, Kim SK (2017) Effects of thyroid hormone withdrawal on metabolic and cardiovascular parameters during radioactive iodine therapy in differentiated thyroid cancer. J Int Med Res 45:38–50

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Luciano Carideo and Mrs Valentina Biondi, from the Nuclear Medicine Unit of Sant’Andrea University Hospital for the help with data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Cicone.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the study were in accordance with the standards of the institutional ethical committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

40618_2017_811_MOESM1_ESM.tif

Association between anti-thyroid antibodies and the different types of thyroid infiltrate. Left panel (a): bar graphs representing anti-TPO levels (mean ± SD) in patients with no thyroid infiltration, non-Hashimoto-like lymphocytic thyroiditis (NHLT) and Hashimoto-like thyroiditis (HLT), respectively. Median anti-TPO levels (UI/ml) were: < 10 (range < 10-55.6), 11 (range < 10-303) and 55.95 (range < 10-800) in the three groups, respectively (p < 0.0001, Kruskal–Wallis test). These results are comparable to those obtained in an independent patient cohort [23]. Right panel (b): bar graphs representing anti-Tg levels (mean ± SD) in patients with no thyroid infiltration, non-Hashimoto-like lymphocytic thyroiditis (NHLT) and Hashimoto-like thyroiditis (HLT), respectively. Median anti-Tg levels (UI/ml) were < 10 in all three groups (ranges: < 10-91, < 10-176 and < 10-1808 in the three groups, respectively (p < 0.0020, Kruskal–Wallis test) (TIFF 734 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cicone, F., Santaguida, M.G., My, G. et al. Hyperhomocysteinemia in acute iatrogenic hypothyroidism: the relevance of thyroid autoimmunity. J Endocrinol Invest 41, 831–837 (2018). https://doi.org/10.1007/s40618-017-0811-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-017-0811-y

Keywords

Navigation