Skip to main content

Advertisement

Log in

AT-101 acts as anti-proliferative and hormone suppressive agent in mouse pituitary corticotroph tumor cells

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Gossypol, a naturally occurring compound in cottonseeds, has anticancer effects against several tumor cell lines. It has been extensively studied in clinical trials and is well tolerated with a favorable safety profile. AT-101, a derivative of R (−)-gossypol, binds to Bcl-2 family proteins and induces apoptosis in vitro. Although transsphenoidal surgical excision of the pituitary corticotroph adenoma is the gold standard of care, it is not successful all the time. Medical therapy for Cushing’s disease still remains a challenge for the clinicians. We aimed to investigate the cytotoxic and apoptotic effects of AT-101 in mouse pituitary corticotroph tumor AtT20 cells.

Methods

Cytotoxic effect of AT-101 was assessed by XTT cell viability assay. Apoptosis was shown by measuring DNA fragmentation and Caspase-3/7 activity. Changes in mRNA expressions of apoptosis-related genes were investigated by qPCR array after treatment with AT-101. ACTH was measured by ACTH-EIA Kit.

Results

AT-101 induced cytotoxicity and apoptosis in AtT20 cells. mRNA levels of pro-apoptotic genes such as TNFR-SF-10B, Bid, PYCARD, Caspase-8, Caspase-3, and Caspase-7 were induced by 2.0-, 1.5-, 1.7-, 1.5-, 1.6-, and 2-fold, respectively, in AtT20 cells by AT-101 treatment. Moreover, some of the anti-apoptotic genes such as BCL2L10, NAIP1, and PAK-7 were reduced by 2.1-, 2.3-, 4.0-fold, respectively, in AtT20 cells. AT-101 also decreased ACTH secretion significantly.

Conclusion

AT-101 induces apoptosis in mouse pituitary corticotroph tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pivonello R, De Martino MC, De Leo M, Lombardi G, Colao A (2008) Cushing’s Syndrome. Endocrinol Metab Clin North Am 37(1):135–149. doi:10.1016/j.ecl.2007.10.010

    Article  CAS  PubMed  Google Scholar 

  2. Atkinson AB, Kennedy A, Wiggam MI, McCance DR, Sheridan B (2005) Long-term remission rates after pituitary surgery for Cushing’s disease: the need for long-term surveillance. Clin Endocrinol (Oxf) 6(5):549–559

    Article  Google Scholar 

  3. Hammer GD, Tyrrell JB, Lamborn KR, Applebury CB, Hannegan ET, Bell S, Rahl R, Lu A, Wilson CB (2004) Transsphenoidal microsurgery for Cushing’s disease: initial outcome and long-term results. J Clin Endocrinol Metab 89(12):6348–6357

    Article  CAS  PubMed  Google Scholar 

  4. Mancini T, Porcelli T, Giustina A (2010) Treatment of Cushing disease: overview and recent findings. Ther Clin Risk Manag 6:505–516. doi:10.2147/TCRM.S12952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Miller JW, Crapo L (1993) The medical treatment of Cushing’s syndrome. Endocr Rev 14(4):443–458

    Article  CAS  PubMed  Google Scholar 

  6. Wu D (1989) An overview of the clinical pharmacology and therapeutic potential of gossypol as a male contraceptive and in gynecological disease. Drugs 38(3):333–341

    Article  PubMed  Google Scholar 

  7. Freedman TB, Cao X, Oliveira RV, Oliveira RV, Cass QB, Nafie LA (2003) Determination of the absolute configuration and solution conformation of gossypol by vibrational circular dichorism. Chirality 15(2):196–200

    Article  CAS  PubMed  Google Scholar 

  8. Dodou K, Anderson RJ, Small DA, Groundwater PW (2005) Investigations on gossypol: past and present developments. Expert Opin Investig Drugs 14(11):1419–1434

    Article  CAS  PubMed  Google Scholar 

  9. Tuszynski PG, Cossu G (1984) Differential cytotoxicity of gossypol on human melanoma, colon carcinoma, and other tissue culture cell lines. Can Res 44:768–771

    CAS  Google Scholar 

  10. Zhang M, Liu H, Guo R, Ling Y, Wu X, Li B, Roller PP, Wang S, Yang D (2003) Molecular mechanism of gossypol-induced cell growth inhibition and cell death of HT-29 human colon carcinoma cells. Biochem Pharmacol 66(1):93–103

    Article  CAS  PubMed  Google Scholar 

  11. Chang JS, Hsu YL, Kuo PL, Chiang LC, Lin CC (2004) Upregulation of Fas/Fas ligand-mediated apoptosis by gossypol in an immortalized human alveolar lung cancer cell line. Clin Exp Pharmacol Physiol 31(10):716–722

    Article  CAS  PubMed  Google Scholar 

  12. Flack MR, Pyle RG, Mullen NM, Lorenzo B, Wu YW, Knazek RA, Nisula BC, Reidenberg MM (1993) Oral gossypol in the treatment of metastatic adrenal cancer. J Clin Endocrinol Metab 76(4):1019–1024

    CAS  PubMed  Google Scholar 

  13. Perez-Rivas LG, Reincke M (2016) Genetics of Cushing’s disease: an update. J Endocrinol Invest 39(1):29–35. doi:10.1007/s40618-015-0353-0 (Epub 2015 Jul 25)

    Article  CAS  PubMed  Google Scholar 

  14. Green VL, White MC, Hipkin LJ, Jeffreys RV, Foy PM, Atkin SL (1997) Apoptosis and p53 suppressor gene protein expression in human pituitary adenomas. Eur J Endocrinol 136(4):382–387

    Article  CAS  PubMed  Google Scholar 

  15. Kulig E, Jin L, Qian X, Horvath E, Kovacs K, Stefaneanu L, Scheithauer BW, Lloyd RV (1999) Apoptosis in nontumorous and neoplastic human pituitaries. Am J Pathol 154(3):767–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ahlbom E, Grandison L, Zhivotovsky B, Ceccatelli S (1998) Termination of lactation induces apoptosis and alters the expression of the Bcl-2 family members in the rat anterior pituitary. Endocrinology 139(5):2465–2471

    Article  CAS  PubMed  Google Scholar 

  17. Kisim A, Atmaca H, Cakar B, Karabulut B, Sezgin C, Uzunoglu S, Uslu R, Karaca B (2012) Pretreatment with AT-101 enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of breast cancer cells by inducing death receptors 4 and 5 protein levels. J Cancer Res Clin Oncol 138(7):1155–1163. doi:10.1007/s00432-012-1187-1

    Article  CAS  PubMed  Google Scholar 

  18. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  CAS  PubMed  Google Scholar 

  19. James DF, Castro JE, Loria O, Prada CE, Aguillon AR, Kipps TJ (2006) AT-101, a small molecule Bcl-2 antagonist, in treatment naïve CLL patients (pts) with high risk features; Preliminary results from an ongoing phase I trial. Journal of Clinical Oncology 24(18suppl):6605. doi:10.1200/jco.2006.24.18_suppl.6605)

    Google Scholar 

  20. Karaca B, Atmaca H, Bozkurt E, Kisim A, Uzunoglu S, Karabulut B, Sezgin C, Sanli UA, Uslu R (2013) Combination of AT-101/cisplatin overcomes chemoresistance by inducing apoptosis and modulating epigenetics in human ovarian cancer cells. Mol Biol Rep 40(6):3925–3933. doi:10.1007/s11033-012-2469-z

    Article  CAS  PubMed  Google Scholar 

  21. Ren T, Shan J, Qing Y, Qian C, Li Q, Lu G, Li M, Li C, Peng Y, Luo H, Zhang S, Zhang W, Wang D, Zhou SF (2014) Sequential treatment with AT-101 enhances cisplatin chemosensitivity in human non-small cell lung cancer cells through inhibition of apurinic/apyrimidinic endonuclease 1-activated IL-6/STAT3 signaling pathway. Drug Des Devel Ther 12(8):2517–2529. doi:10.2147/DDDT.S71432 (eCollection)

    Article  Google Scholar 

  22. Zerp SF, Stoter TR, Hoebers FJ, van den Brekel MW, Dubbelman R, Kuipers GK, Lafleur MV, Slotman BJ, Verheij M (2015) Targeting anti-apoptotic Bcl-2 by AT-101 to increase radiation efficacy: data from in vitro and clinical pharmacokinetic studies in head and neck cancer. Radiat Oncol 30(10):158. doi:10.1186/s13014-015-0474-9

    Article  Google Scholar 

  23. Chattergoon MA, Muthumani K, Tamura Y, Ramanathan M, Shames JP, Saulino V, Robinson TM, Montaner LJ, Weiner DB (2008) DR5 activation of caspase-8 induces DC maturation and immune enhancement in vivo. Mol Ther 16(2):419–426

    Article  CAS  PubMed  Google Scholar 

  24. Taguchi T, Takao T, Iwasaki Y, Nishiyama M, Asaba K, Hashimoto K (2006) Suppressive effect of dehydroepiandrosterone and the nuclear factor-κβ inhibitor parthenolide on corticotroph tumor cell growth and function in vitro and in vivo. J Endocrinol 188(2):321–331

    Article  CAS  PubMed  Google Scholar 

  25. Bangaru ML, Woodliff J, Raff H, Kansra S (2010) Growth suppression of mouse pituitary corticotroph tumor At-T20 cells by curcumin: a model for treating Cushing’s disease. PLoS One 5(4):e9893. doi:10.1371/journal.pone.0009893

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ciato D, Mumbach AG, Paez-Pereda M, Stalla GK (2017) Currently used and investigational drugs for Cushing’s disease. Expert Opin Investig Drugs 26(1):75–84. doi:10.1080/13543784.2017.1266338 (Epub 2016 Dec 8)

    Article  CAS  PubMed  Google Scholar 

  27. Boscaro M, Ludlam WH, Atkinson B, Glusman JE, Petersenn S, Reincke M, Snyder P, Tabarin A, Biller BM, Findling J, Melmed S, Darby CH, Hu K, Wang Y, Freda PU, Grossman AB, Frohman LA, Bertherat J (2009) Treatment of pituitary-dependent Cushing’s disease with the multireceptor ligand somatostatin analog pasireotide (SOM230): a multicenter, phase II trial. J Clin Endocrinol Metab 94(1):115–122. doi:10.1210/jc.2008-1008 (Epub 2008 Oct 28)

    Article  CAS  PubMed  Google Scholar 

  28. Colao A, Petersenn S, Newell-Price J, Findling JW, Gu F, Maldonado M, Schoenherr U, Mills D, Salgado LR, Biller BM, Pasireotide B2305 Study Group (2012) A 12-month phase 3 study of pasireotide in Cushing’s disease. N Engl J Med 366(10):914–924. doi:10.1056/NEJMoa1105743

    Article  CAS  PubMed  Google Scholar 

  29. Ligueros-Saylan M, Zhang Y, Newell-Price J, Petersenn S, Lymperopoulos S (2012) Evaluation of the efficacy and safety of pasireotide LAR in patients with mild-to-moderate Cushing’s disease: a randomized, double-blind, multicenter, phase III study design. Presented at 15th International and 14th European Congress of Endocrinology, 2012, Florence, Italy. Endocrine Abstracts 29 (P1542.1)

  30. Godbout A, Manavela M, Danilowicz K, Beauregard H, Bruno OD, Lacroix A (2010) 9 Cabergoline monotherapy in the long-term treatment of Cushing’s disease. Eur J Endocrinol 163(5):709–716. doi:10.1530/EJE-10-0382 (Epub 2010 Aug 11)

    Article  CAS  PubMed  Google Scholar 

  31. Guelho D, Grossman AB (2015) Emerging drugs for Cushing’s disease. Expert Opin Emerg Drugs 20(3):463–478. doi:10.1517/14728214.2015.1047762 (Epub 2015 Jun 2)

    Article  CAS  PubMed  Google Scholar 

  32. Páez-Pereda M, Kovalovsky D, Hopfner U, Theodoropoulou M, Pagotto U, Uhl E, Losa M, Stalla J, Grübler Y, Missale C, Arzt E, Stalla GK (2001) Retinoic acid prevents experimental Cushing syndrome. J Clin Invest 108(8):1123–1131

    Article  PubMed  PubMed Central  Google Scholar 

  33. Castillo V, Giacomini D, Páez-Pereda M, Stalla J, Labeur M, Theodoropoulou M, Holsboer F, Grossman AB, Stalla GK, Arzt E (2006) Retinoic acid as a novel medical therapy for Cushing’s disease in dogs. Endocrinology 147(9):4438–4444 (Epub 2006 Jun 1)

    Article  CAS  PubMed  Google Scholar 

  34. Bilodeau S, Vallette-Kasic S, Gauthier Y, Figarelle-Branger D, Brue T, Berthelet F, Lacroix A, Batista D, Stratakis C, Hanson J, Meij B, Drouin J (2006) Role of Brg1 and HDAC2 in GR transrepression of the pituitary POMC gene and misexpression in Cushing disease. Genes Dev 20(20):2871–2886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Scientific Research Projects Committee of Ege University (Project No: 2011-TIP-077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Yurekli.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurekli, B.S., Karaca, B., Kisim, A. et al. AT-101 acts as anti-proliferative and hormone suppressive agent in mouse pituitary corticotroph tumor cells. J Endocrinol Invest 41, 233–240 (2018). https://doi.org/10.1007/s40618-017-0733-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-017-0733-8

Keywords

Navigation