Skip to main content

Advertisement

Log in

The pre-mir-27a variant rs895819 may contribute to type 2 diabetes mellitus susceptibility in an Iranian cohort

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

The study was aimed at investigating the association between hsa-mir-27a polymorphism rs895819 (T/C) and type 2 diabetes mellitus (T2DM) susceptibility in a large Iranian cohort.

Methods

In this case–control study, the investigated population consisted of T2DM patients (n = 204) and sex- and age-matched controls (n = 209). We used the polymerase chain reaction and restriction fragment length polymorphism (PCR–RFLP) for genotyping.

Results

We observed significant differences between T2DM patients and controls for weight (p = 0.002), BMI (p < 0.001), systolic blood pressure (p < 0.001), diastolic blood pressure (p < 0.001), fasting plasma glucose (p < 0.001), triglyceride (p = 0.004) and LDL cholesterol (p = 0.051). Moreover, we found that genotype distributions were significantly different between groups (p < 0.05) and that the rs895819-C allele is more frequent in controls (p = 0.030, OR = 0.72, 95 % CI 0.53–0.97).

Conclusion

Our study shows that rs895819 in hsa-mir-27a is associated with T2DM susceptibility and that the C allele conveyed a protective role against T2DM. Larger multicentric and specific functional studies will be necessary to obtain a deeper comprehension of the role of rs895819 and hsa-mir-27a and how they are involved in the development of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sanghera DK, Blackett PR (2012) Type 2 diabetes genetics: beyond GWAS. J Diabetes Metab 3(198):6948

    PubMed  PubMed Central  Google Scholar 

  2. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87(1):4–14

    Article  CAS  PubMed  Google Scholar 

  3. Amutha A, Mohan V (2016) Diabetes complications in childhood and adolescent onset type 2 diabetes—a review. J Diabetes Complicat. doi: 10.1016/j.jdiacomp.2016.02.009

  4. Ciccacci C, Di Fusco D, Cacciotti L, Morganti R, D’Amato C, Greco C, Rufini S, Novelli G, Sangiuolo F, Spallone V, Borgiani P (2013) MicroRNA genetic variations: association with type 2 diabetes. Acta Diabetol 50(6):867–872

    Article  CAS  PubMed  Google Scholar 

  5. Zhao X, Ye Q, Xu K, Cheng J, Gao Y, Li Q, Du J, Shi H, Zhou L (2013) Single-nucleotide polymorphisms inside microRNA target sites influence the susceptibility to type 2 diabetes. J Hum Genet 58(3):135–141

    Article  CAS  PubMed  Google Scholar 

  6. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    Article  CAS  PubMed  Google Scholar 

  7. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  8. Rottiers V, Naar AM (2012) MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 13(4):239–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Heneghan HM, Miller N, Kerin MJ (2010) Role of microRNAs in obesity and the metabolic syndrome. Obes Rev 11(5):354–361

    Article  CAS  PubMed  Google Scholar 

  10. Chen H, Lan HY, Roukos DH, Cho WC (2014) Application of microRNAs in diabetes mellitus. J Endocrinol 222(1):R1–R10

    Article  CAS  PubMed  Google Scholar 

  11. Kim SY, Kim AY, Lee HW, Son YH, Lee GY, Lee JW, Lee YS, Kim JB (2010) miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression. Biochem Biophys Res Commun 392(3):323–328

    Article  CAS  PubMed  Google Scholar 

  12. Qin L, Chen Y, Niu Y, Chen W, Wang Q, Xiao S, Li A, Xie Y, Li J, Zhao X, He Z, Mo D (2010) A deep investigation into the adipogenesis mechanism: profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/beta-catenin signaling pathway. BMC Genom 11(320):1471–2164

    Google Scholar 

  13. Tan CK, Chong HC, Tan EH, Tan NS (2012) Getting ‘Smad’ about obesity and diabetes. Nutr Diabetes 5(2):1

    Google Scholar 

  14. Offer SM, Butterfield GL, Jerde CR, Fossum CC, Wegner NJ, Diasio RB (2014) microRNAs miR-27a and miR-27b directly regulate liver dihydropyrimidine dehydrogenase expression through two conserved binding sites. Mol Cancer Ther 13(3):742–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang T-T, Chen Y-J, Sun L-L, Zhang S-J, Zhou Z-Y, Qiao H (2015) Affection of single-nucleotide polymorphisms in miR-27a, miR-124a, and miR-146a on susceptibility to type 2 diabetes mellitus in Chinese Han people. Chin Med J 128(4):533

    Article  PubMed  PubMed Central  Google Scholar 

  16. Association AD (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37(Supplement 1):S81–S90

    Article  Google Scholar 

  17. Sievers F, Higgins DG (2014) Clustal omega, accurate alignment of very large numbers of sequences. Multiple sequence alignment methods. Springer, Berlin, pp 105–116

    Chapter  Google Scholar 

  18. Sabarinathan R, Tafer H, Seemann SE, Hofacker IL, Stadler PF, Gorodkin J (2013) RNAsnp: efficient detection of local RNA secondary structure changes induced by SNPs. Hum Mutat 34(4):546–556

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL (2008) The vienna RNA websuite. Nucleic Acids Res 36(suppl 2):W70–W74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Siva N (2008) 1000 Genomes project. Nat Biotechnol 26(3):256

    PubMed  Google Scholar 

  21. Menashe I, Rosenberg PS, Chen BE (2008) PGA: power calculator for case-control genetic association analyses. BMC Genet 9(1):36

    Article  PubMed  PubMed Central  Google Scholar 

  22. González JR, Armengol L, Solé X, Guinó E, Mercader JM, Estivill X, Moreno V (2007) SNPassoc: an R package to perform whole genome association studies. Bioinformatics 23(5):654–655

    Article  Google Scholar 

  23. McCauley JL, Kenealy SJ, Margulies EH, Schnetz-Boutaud N, Gregory SG, Hauser SL, Oksenberg JR, Pericak-Vance MA, Haines JL, Mortlock DP (2007) SNPs in multi-species conserved sequences (MCS) as useful markers in association studies: a practical approach. BMC Genom 8(1):266

    Article  Google Scholar 

  24. Zeng Y, Yi R, Cullen BR (2005) Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J 24(1):138–148

    Article  CAS  PubMed  Google Scholar 

  25. Zakharov S, Wong TY, Aung T, Vithana EN, Khor CC, Salim A, Thalamuthu A (2013) Combined genotype and haplotype tests for region-based association studies. BMC Genom 14(1):569

    Article  Google Scholar 

  26. Ridolfi E, Fenoglio C, Cantoni C, Calvi A, De Riz M, Pietroboni A, Villa C, Serpente M, Bonsi R, Vercellino M (2013) Expression and genetic analysis of microRNAs involved in multiple sclerosis. Int J Mol Sci 14(3):4375–4384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the Shahid Beheshti University of Medical Sciences (Grant Number 1393-1-91-13285) and the Italian Ministry of Health (RC-2015 and RC-2016) for financial support.

Funding

This study was granted by Shahid Beheshti University of Medical Sciences (Grant Number: 1393-1-91-13285) and the Italian Ministry of Health (RC-2015 and RC-2016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. D. Omrani or A. Masotti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the study involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaedi, H., Tabasinezhad, M., Alipoor, B. et al. The pre-mir-27a variant rs895819 may contribute to type 2 diabetes mellitus susceptibility in an Iranian cohort. J Endocrinol Invest 39, 1187–1193 (2016). https://doi.org/10.1007/s40618-016-0499-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-016-0499-4

Keywords

Navigation