Skip to main content
Log in

Psychosine inhibits osteoclastogenesis and bone resorption via G protein-coupled receptor 65

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

It was recently reported that G protein-coupled receptor 65 (GPR65) suppresses ovariectomy-induced bone loss.

Aim

The present study investigated the role of the lysosphingolipid psychosine, a GPR65 ligand, on osteoclastic differentiation and bone resorption.

Methods

Osteoclasts were differentiated from mouse bone marrow macrophages. Tartrate-resistant acid phosphatase-positive multinucleated cells were considered to be osteoclasts, and the resorption area was measured by incubating the cells on dentine discs. The expression levels of osteoclast differentiation markers were assessed by qRT-PCR. GPR65 siRNA and its scrambled siRNA were transfected with lipofectamine. Intracellular cyclic adenosine monophosphate (cAMP) levels were assessed using a direct enzyme immunoassay.

Results

Psychosine inhibited osteoclastogenesis and in vitro bone resorption without any significant effect on the viability of pre-osteoclasts, decreased the expression of osteoclast differentiation markers significantly, and increased intracellular cAMP levels. The knockdown of GPR65 by its siRNA restored osteoclastogenesis and decreased cAMP levels in the presence of psychosine.

Conclusion

Psychosine inhibits osteoclastogenesis by increasing intracellular cAMP levels via GPR65.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. (1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94:646–650

  2. Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650. doi:10.1038/nrm908

    Article  CAS  PubMed  Google Scholar 

  3. Juppner H (1994) Molecular cloning and characterization of a parathyroid hormone/parathyroid hormone-related peptide receptor: a member of an ancient family of G protein-coupled receptors. Curr Opin Nephrol Hypertens 3:371–378

    Article  CAS  PubMed  Google Scholar 

  4. Purdue BW, Tilakaratne N, Sexton PM (2002) Molecular pharmacology of the calcitonin receptor. Recept Channels 8:243–255

    Article  CAS  PubMed  Google Scholar 

  5. D’Souza-Li L (2006) The calcium-sensing receptor and related diseases. Arq Bras Endocrinol Metabol 50:628–639

    Article  PubMed  Google Scholar 

  6. Tomura H, Mogi C, Sato K, Okajima F (2005) Proton-sensing and lysolipid-sensitive G-protein-coupled receptors: a novel type of multi-functional receptors. Cell Signal 17:1466–1476. doi:10.1016/j.cellsig.2005.06.002

    Article  CAS  PubMed  Google Scholar 

  7. Im DS, Heise CE, Nguyen T, O’Dowd BF, Lynch KR (2001) Identification of a molecular target of psychosine and its role in globoid cell formation. J Cell Biol 153:429–434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hikiji H, Endo D, Horie K, Harayama T, Akahoshi N, Igarashi H, Kihara Y, Yanagida K, Takeda J, Koji T, Shimizu T, Ishii S (2014) TDAG8 activation inhibits osteoclastic bone resorption. FASEB J 28:871–879. doi:10.1096/fj.13-233106

    Article  CAS  PubMed  Google Scholar 

  9. Wang JQ, Kon J, Mogi C, Tobo M, Damirin A, Sato K, Komachi M, Malchinkhuu E, Murata N, Kimura T, Kuwabara A, Wakamatsu K, Koizumi H, Uede T, Tsujimoto G, Kurose H, Sato T, Harada A, Misawa N, Tomura H, Okajima F (2004) TDAG8 is a proton-sensing and psychosine-sensitive G-protein-coupled receptor. J Biol Chem 279:45626–45633. doi:10.1074/jbc.M406966200

    Article  CAS  PubMed  Google Scholar 

  10. Ishii S, Kihara Y, Shimizu T (2005) Identification of T cell death-associated gene 8 (TDAG8) as a novel acid sensing G-protein-coupled receptor. J Biol Chem 280:9083–9087. doi:10.1074/jbc.M407832200

    Article  CAS  PubMed  Google Scholar 

  11. Seuwen K, Ludwig MG, Wolf RM (2006) Receptors for protons or lipid messengers or both? J Recept Signal Transduct Res 26:599–610. doi:10.1080/10799890600932220

    Article  CAS  PubMed  Google Scholar 

  12. Meyer zu Heringdorf D, Jakobs KH (2007) Lysophospholipid receptors: signalling, pharmacology and regulation by lysophospholipid metabolism. Biochim Biophys Acta 1768:923–940. doi:10.1016/j.bbamem.2006.09.026

    Article  CAS  PubMed  Google Scholar 

  13. Yoon SH, Ryu J, Lee Y, Lee ZH, Kim HH (2011) Adenylate cyclase and calmodulin-dependent kinase have opposite effects on osteoclastogenesis by regulating the PKA-NFATc1 pathway. J Bone Miner Res 26:1217–1229. doi:10.1002/jbmr.310

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki K (1998) Twenty five years of the “psychosine hypothesis”: a personal perspective of its history and present status. Neurochem Res 23:251–259

    Article  CAS  PubMed  Google Scholar 

  15. Mun SH, Won HY, Hernandez P, Aguila HL, Lee SK (2013) Deletion of CD74, a putative MIF receptor, in mice enhances osteoclastogenesis and decreases bone mass. J Bone Miner Res 28:948–959. doi:10.1002/jbmr.1787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lee SK, Gardner AE, Kalinowski JF, Jastrzebski SL, Lorenzo JA (2006) RANKL-stimulated osteoclast-like cell formation in vitro is partially dependent on endogenous interleukin-1 production. Bone 38:678–685. doi:10.1016/j.bone.2005.10.011

    Article  CAS  PubMed  Google Scholar 

  17. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342. doi:10.1038/nature01658

    Article  CAS  PubMed  Google Scholar 

  18. Sato K, Suematsu A, Nakashima T, Takemoto-Kimura S, Aoki K, Morishita Y, Asahara H, Ohya K, Yamaguchi A, Takai T, Kodama T, Chatila TA, Bito H, Takayanagi H (2006) Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nat Med 12:1410–1416. doi:10.1038/nm1515

    Article  CAS  PubMed  Google Scholar 

  19. Whyte LS, Ryberg E, Sims NA, Ridge SA, Mackie K, Greasley PJ, Ross RA, Rogers MJ (2009) The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proc Natl Acad Sci USA 106:16511–16516. doi:10.1073/pnas.0902743106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Wauquier F, Philippe C, Leotoing L, Mercier S, Davicco MJ, Lebecque P, Guicheux J, Pilet P, Miot-Noirault E, Poitout V, Alquier T, Coxam V, Wittrant Y (2013) The free fatty acid receptor G protein-coupled receptor 40 (GPR40) protects from bone loss through inhibition of osteoclast differentiation. J Biol Chem 288:6542–6551. doi:10.1074/jbc.M112.429084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Iwai K, Koike M, Ohshima S, Miyatake K, Uchiyama Y, Saeki Y, Ishii M (2007) RGS18 acts as a negative regulator of osteoclastogenesis by modulating the acid-sensing OGR1/NFAT signaling pathway. J Bone Miner Res 22:1612–1620. doi:10.1359/jbmr.070612

    Article  CAS  PubMed  Google Scholar 

  22. Pereverzev A, Komarova SV, Korcok J, Armstrong S, Tremblay GB, Dixon SJ, Sims SM (2008) Extracellular acidification enhances osteoclast survival through an NFAT-independent, protein kinase C-dependent pathway. Bone 42:150–161. doi:10.1016/j.bone.2007.08.044

    Article  CAS  PubMed  Google Scholar 

  23. Yang M, Mailhot G, Birnbaum MJ, MacKay CA, Mason-Savas A, Odgren PR (2006) Expression of and role for ovarian cancer G-protein-coupled receptor 1 (OGR1) during osteoclastogenesis. J Biol Chem 281:23598–23605. doi:10.1074/jbc.M602191200

    Article  CAS  PubMed  Google Scholar 

  24. Kottyan LC, Collier AR, Cao KH, Niese KA, Hedgebeth M, Radu CG, Witte ON, Khurana Hershey GK, Rothenberg ME, Zimmermann N (2009) Eosinophil viability is increased by acidic pH in a cAMP- and GPR65-dependent manner. Blood 114:2774–2782. doi:10.1182/blood-2009-05-220681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Sheridan CM, Heist EK, Beals CR, Crabtree GR, Gardner P (2002) Protein kinase A negatively modulates the nuclear accumulation of NF-ATc1 by priming for subsequent phosphorylation by glycogen synthase kinase-3. J Biol Chem 277:48664–48676. doi:10.1074/jbc.M207029200

    Article  CAS  PubMed  Google Scholar 

  26. Kim BJ, Lee YS, Lee SY, Park SY, Dieplinger H, Yea K, Lee SH, Koh JM, Kim GS (2013) Afamin stimulates osteoclastogenesis and bone resorption via Gi-coupled receptor and Ca2+/calmodulin-dependent protein kinase (CaMK) pathways. J Endocrinol Invest 36:876–882. doi:10.3275/8975

    CAS  PubMed  Google Scholar 

  27. Robison GA, Butcher RW, Sutherland EW (1968) Cyclic AMP. Annu Rev Biochem 37:149–174. doi:10.1146/annurev.bi.37.070168.001053

    Article  CAS  PubMed  Google Scholar 

  28. Duffner PK, Barczykowski A, Jalal K, Yan L, Kay DM, Carter RL (2011) Early infantile Krabbe disease: results of the World-Wide Krabbe Registry. Pediatr Neurol 45:141–148. doi:10.1016/j.pediatrneurol.2011.05.007

    Article  PubMed  Google Scholar 

  29. Suzuki K (2003) Globoid cell leukodystrophy (Krabbe’s disease): update. J Child Neurol 18:595–603

    Article  PubMed  Google Scholar 

  30. Contreras MA, Ries WL, Shanmugarajan S, Arboleda G, Singh I, Singh AK (2010) Factors that affect postnatal bone growth retardation in the twitcher murine model of Krabbe disease. Biochim Biophys Acta 1802:601–608. doi:10.1016/j.bbadis.2010.04.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Whitfield PD, Sharp PC, Taylor R, Meikle P (2001) Quantification of galactosylsphingosine in the twitcher mouse using electrospray ionization-tandem mass spectrometry. J Lipid Res 42:2092–2095

    CAS  PubMed  Google Scholar 

  32. Nozawa M, Iwamoto T, Tokoro T, Eto Y (1992) Novel procedure for measuring psychosine derivatives by an HPLC method. J Neurochem 59:607–609

    Article  CAS  PubMed  Google Scholar 

  33. Galbiati F, Basso V, Cantuti L, Givogri MI, Lopez-Rosas A, Perez N, Vasu C, Cao H, van Breemen R, Mondino A, Bongarzone ER (2007) Autonomic denervation of lymphoid organs leads to epigenetic immune atrophy in a mouse model of Krabbe disease. J Neurosci 27:13730–13738. doi:10.1523/jneurosci.3379-07.2007

    Article  CAS  PubMed  Google Scholar 

  34. Zhu H, Lopez-Rosas A, Qiu X, Van Breemen RB, Bongarzone ER (2012) Detection of the neurotoxin psychosine in samples of peripheral blood: application in diagnostics and follow-up of Krabbe disease. Arch Pathol Lab Med 136:709–710. doi:10.5858/arpa.2011-0667-LE

    Article  PubMed Central  PubMed  Google Scholar 

  35. Zanfini A, Dreassi E, Berardi A, Governini L, Corbini G, Costantino-Ceccarini E, Balestri P, Luddi A (2013) Quantification of psychosine in the serum of twitcher mouse by LC-ESI-tandem-MS analysis. J Pharm Biomed Anal 80:44–49. doi:10.1016/j.jpba.2013.02.039

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Korea Health Technology R&D project, Ministry of Health and Welfare, Republic of Korea (project No.: HI14C2185) and by a grant from the Asan Institute for Life Sciences, Seoul, Republic of Korea (project No.: 2014-586).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. All procedures performed in studies involving animals were approved by the Institutional Animal Care and Use Committee of the Asan Institute for Life Sciences (Seoul, Korea).

Informed consent

No informed consent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.-J. Kim.

Additional information

S. H. Ahn and S.-Y. Lee contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, S.H., Lee, SY., Baek, JE. et al. Psychosine inhibits osteoclastogenesis and bone resorption via G protein-coupled receptor 65. J Endocrinol Invest 38, 891–899 (2015). https://doi.org/10.1007/s40618-015-0276-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-015-0276-9

Keywords

Navigation