Skip to main content
Log in

Ring index of a graph

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

Let G be a graph with n vertices and m edges and r connected components. The free rank of G, denoted by \(\text {frank}(G)\), is the number of primitive cycles of G. Also, the cycle rank of G was defined as \(\text {rank}(G) := m-n+r\). The family of graphs satisfying the equality \(\text {rank}(G) = \text {frank}(G)\) is called ring graphs. The full characterization of this family of graphs were given in Gitler et al. (J. Algebraic Comb. 38:721–744, 2013; Discret. Math. 310:430–441, 2010). In this paper, we consider the following problem: Find the minimum number n such that the n-iterated line graph of G is not a ring graph, i.e. \(\text {rank}(L^n(G)) \ne \text {frank}(L^n(G))\). For this purpose, we define the ring index of G as the minimum number n such that the n-iterated line graph of G is not a ring graph. We show that the ring index of a graph is at most 3 or is \(\infty \). Furthermore, we give a full characterization of graphs with respect to this index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Carrá Ferro, G., Ferrarello, D.: Ideals and graphs, Gröbner bases and decision procedures in graphs. Discret. Math. 308, 287–298 (2008)

    Article  MATH  Google Scholar 

  2. Corso, A., Nagel, U.: Monomial and toric ideals associated to Ferrers graphs. Trans. Am. Math. Soc. 361, 1371–1395 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Diestel, R.: Graph Theory, 5th edn. Graduate Texts in Mathematics, vol. 173. Springer, Berlin (2017)

  4. Flores-Mández, A., Gitler, I., Reyes, E.: Implosive graphs: square-free monomials on symbolic Rees algebras. J. Algebra Appl. 16, 1750145 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ghebleh, M., Khatirinejad, M.: Planarity of iterated line graphs. Discret. Math. 308, 144–147 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gitler, I., Reyes, E., Villarreal, R.: Blowup algebras of ideals of vertex covers of bipartite graphs. Contemp. Math. 376, 273–279 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gitler, I., Reyes, E., Vega, J.A.: CIO and ring graphs: deficiency and testing. J. Symb. Comput. 79, 249–268 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gitler, I., Reyes, E., Vega, J.A.: Complete intersection toric ideals of oriented graphs and chorded-theta subgraphs. J. Algebr. Comb. 38, 721–744 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gitler, I., Reyes, E., Villarreal, R.H.: Ring graphs and complete intersection toric ideals. Discret. Math. 310, 430–441 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gitler, I., Villarreal, R.H.: Graphs, Rings and Polyhedra. Textos Nivel Avanzado. Aportaciones Matemáticas, vol. 35. Sociedad Matemática Mexicana, Mexico (2011)

  11. Herzog, J., Hibi, T.: Distributive lattices, bipartite graphs and Alexander dualtity. J. Algebr. Comb. 22, 289–302 (2005)

    Article  MATH  Google Scholar 

  12. Herzog, J., Hibi, T., Hreinsdottir, F., Kahle, T., Rauh, J.: Binomial edge ideals and conditional independence statements. Adv. Appl. Math. 45, 317–333 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin, H., Yang, W., Zhang, H., Shu, J.: Outerplanarity of line graphs and iterated line graphs. Appl. Math. Lett. 24, 1214–1217 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nagel, U., Petrovic, S.: Properties of cut ideals associated to ring graphs. J. Commut. Algebra 1, 547–565 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Reyes, E., Tatakis, C., Thoma, A.: Minimal generators of toric ideals of graphs. Adv. Appl. Math. 48, 64–78 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Simis, A., Vasconcelos, W., Villarreal, R.: On the ideal theory of graphs. J. Algebra 167, 389–416 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Simis, A., Vasconcelos, W., Villarreal, R.: The integral closure of subrings associated to graphs. J. Algebra 199, 281–289 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sturmfels, B., Sullivant, S.: Toric geometry of cuts and splits. Mich. Math. J. 57, 689–709 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Valencia, C.E., Villarreal, R.: Explicit representations of the edge cone of a graph. Int. J. Contemp. Math. Sci. 1, 53–66 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Villarreal, R.: Cohen–Macaulay graphs. Manuscr. Math. 66, 277–293 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Villarreal, R.: Rees algebras of edge ideals. Commun. Algebra 23, 3513–3524 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Villarreal, R.: On the equations of the edge cone of a graph and some applications. Manuscr. Math. 97, 309–317 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Villarreal, R.: Monomial Algebras, Monographs and Textbooks. Pure and Appl. Math, vol. 238. Marcel Dekker, Inc., New York (2001)

Download references

Acknowledgements

The author thanks the referees for their thorough review and highly appreciate their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Barati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barati, Z. Ring index of a graph. Bol. Soc. Mat. Mex. 25, 225–236 (2019). https://doi.org/10.1007/s40590-018-0195-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40590-018-0195-9

Keywords

Mathematics Subject Classification

Navigation