Skip to main content

Advertisement

Log in

Use of Untargeted Metabolomics to Explore the Air Pollution-Related Disease Continuum

  • Susceptibility Factors in Environmental Health (Z Liew and K Pollitt, Section Editors)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to summarize the application of untargeted metabolomics to identify the perturbation of metabolites or metabolic pathways associated with air pollutant exposures.

Recent Findings

Twenty-three studies were included in this review, in adults, children, or pregnant women. The most commonly measured air pollutant is particulate matter smaller than 2.5 μm. Size-fractioned particles, particle chemical species, gas pollutants, or organic compounds were also investigated. The reviewed studies used a wide range of air pollution measurement techniques and metabolomics analyses. Identified metabolites were primarily related to oxidative stress and inflammatory responses, and a few were related to the alterations of steroid metabolic pathways. The observed metabolic perturbations can differ by disease status, sex, and age. Air pollution-related metabolic changes were also associated with health outcomes in some studies.

Summary

Our review shows that air pollutant exposures are associated with metabolic pathways primarily related to oxidative stress, inflammation, as assessed through untargeted metabolomics in 23 studies. More metabolomic studies with larger sample sizes are needed to identify air pollution components most responsible for adverse health effects, elaborate on mechanisms for subpopulation susceptibility, and link air pollution exposure to specific adverse health effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

COPD:

chronic obstructive pulmonary disease

IHD:

ischemic heart disease

TRAP:

traffic-related air pollution

O3 :

ozone

PAHs:

polycyclic aromatic hydrocarbons

PM:

particulate matter

CO:

carbon monoxide

NOx:

nitrogen oxides

PM2.5 :

particulate matter with diameter ≤ 2.5 μm

PM10 :

particulate matter with diameter ≤ 10 μm

UFP:

ultrafine particles (particulate matter of nanoscale size, < 0.1 μm)

PM2.5–10 :

particulate matter with a diameter between 2.5 and 10 μm

TSP:

total suspended particles

Pb-PAH:

particle-bound polycyclic aromatic hydrocarbons

PNC:

particle number concentration

BC:

black carbon

EC:

elemental carbon

OC:

organic carbon

LDSA:

lung deposited surface area

V:

vanadium

1-OHP:

1-hydroxypyrene

LC-MS:

liquid chromatography coupled to mass spectrometry

HILIC:

hydrophilic interaction liquid chromatography

GC-MS:

gas chromatography coupled to mass spectrometry

C18:

C18 hydrophobic reversed-phase chromatography

ESI:

electrospray ionization

TOF:

time-of-flight

HMBD:

Human Metabolome Database

KEGG:

Kyoto Encyclopedia of Genes and Genomes

LC-MS/MS:

liquid chromatography coupled to tandem mass spectrometry

PLS-DA:

partial least squares discriminant analysis

OPLS-DA:

orthogonal PLS-DA

ANOVA:

analysis of variance

ANCOVA:

analysis of covariance

ROS:

reactive oxygen species

PUFA:

polyunsaturated fatty acids

13-HODE:

13-hydroperoxyoctadecadenoic acid

4-HNE:

4-hydroxynonenal

FEV1:

forced expiratory volume in 1 s

Pb-PAHs:

particle-bound polycyclic aromatic hydrocarbons

AOA:

adult-onset asthma

CCVD:

cardio-cerebrovascular diseases

References

  1. Walker, D.I., et al., The metabolome: a key measure for exposome research in epidemiology. Current Epidemiology Reports, 2019: p. 1–11.

  2. Patti GJ, Yanes O, Siuzdak G. Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol. 2012;13(4):263–9.

    Article  CAS  Google Scholar 

  3. Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev. 2007;26(1):51–78.

    Article  CAS  Google Scholar 

  4. Rattray NJ, et al. Beyond genomics: understanding exposotypes through metabolomics. Human genomics. 2018;12(1):4.

    Article  Google Scholar 

  5. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017;389(10082):1907–18.

    Article  Google Scholar 

  6. Turner MC, Jerrett M, Pope CA III, Krewski D, Gapstur SM, Diver WR, et al. Long-term ozone exposure and mortality in a large prospective study. Am J Respir Crit Care Med. 2016;193(10):1134–42.

    Article  CAS  Google Scholar 

  7. Malley CS, Kuylenstierna JCI, Vallack HW, Henze DK, Blencowe H, Ashmore MR. Preterm birth associated with maternal fine particulate matter exposure: a global, regional and national assessment. Environ Int. 2017;101:173–82.

    Article  Google Scholar 

  8. Schraufnagel DE, Balmes JR, Cowl CT, de Matteis S, Jung SH, Mortimer K, et al. Air pollution and noncommunicable diseases: a review by the Forum of International Respiratory Societies’ Environmental Committee, part 1: the damaging effects of air pollution. Chest. 2019;155(2):409–16.

    Article  Google Scholar 

  9. Schraufnagel DE, Balmes JR, Cowl CT, de Matteis S, Jung SH, Mortimer K, et al. Air pollution and noncommunicable diseases: a review by the Forum of International Respiratory Societies’ Environmental Committee, part 2: air pollution and organ systems. Chest. 2019;155(2):417–26.

    Article  Google Scholar 

  10. van Veldhoven K, Kiss A, Keski-Rahkonen P, Robinot N, Scalbert A, Cullinan P, et al. Impact of short-term traffic-related air pollution on the metabolome - results from two metabolome-wide experimental studies. Environ Int. 2019;123:124–31.

    Article  Google Scholar 

  11. Liang DH, et al. Perturbations of the arginine metabolome following exposures to traffic-related air pollution in a panel of commuters with and without asthma. Environ Int. 2019;127:503–13.

    Article  CAS  Google Scholar 

  12. de Oliveira BFA, Chacra APM, Frauches TS, Vallochi A, Hacon S. A curated review of recent literature of biomarkers used for assessing air pollution exposures and effects in humans. Journal of Toxicology and Environmental Health, Part B. 2014;17(7–8):369–410.

    Article  Google Scholar 

  13. Kelly, F.J. and J.C. Fussell, Metabolomics as a tool to unravel the oxidative stress-induced toxicity of ambient air pollutants, in Oxidative Stress. 2020, Elsevier. p. 463–488.

  14. Mu, L.N., et al., Metabolomics profiling before, during, and after the Beijing Olympics: a panel study of within-individual differences during periods of high and low air pollution. Environ Health Perspect, 2019. 127(5).

  15. Ladva, C.N., et al., Particulate metal exposures induce plasma metabolome changes in a commuter panel study. PLoS One, 2018. 13(9).

  16. Shen S, Zhang R, Zhang J, Wei Y, Guo Y, Su L, et al. Welding fume exposure is associated with inflammation: a global metabolomics profiling study. Environ Health. 2018;17(1):68.

    Article  Google Scholar 

  17. Wei, Y., et al., Global metabolomic profiling reveals an association of metal fume exposure and plasma unsaturated fatty acids. PLoS One, 2013. 8(10).

  18. Vlaanderen JJ, Janssen NA, Hoek G, Keski-Rahkonen P, Barupal DK, Cassee FR, et al. The impact of ambient air pollution on the human blood metabolome. Environ Res. 2017;156:341–8.

    Article  CAS  Google Scholar 

  19. Li, H.C., et al., Particulate matter exposure and stress hormone levels a randomized, double-blind, crossover trial of air purification. Circulation, 2017. 136(7): p. 618−+.

  20. Miller DB, Ghio AJ, Karoly ED, Bell LN, Snow SJ, Madden MC, et al. Ozone exposure increases circulating stress hormones and lipid metabolites in humans. Am J Respir Crit Care Med. 2016;193(12):1382–91.

    Article  CAS  Google Scholar 

  21. Chen C, Li H, Niu Y, Liu C, Lin Z, Cai J, et al. Impact of short-term exposure to fine particulate matter air pollution on urinary metabolome: a randomized, double-blind, crossover trial. Environ Int. 2019;130:104878.

    Article  CAS  Google Scholar 

  22. Zhang Y, Chu M, Zhang J, Duan J, Hu D, Zhang W, et al. Urine metabolites associated with cardiovascular effects from exposure of size-fractioned particulate matter in a subway environment: a randomized crossover study. Environ Int. 2019;130:104920.

    Article  CAS  Google Scholar 

  23. Yan Q, Liew Z, Uppal K, Cui X, Ling C, Heck JE, et al. Maternal serum metabolome and traffic-related air pollution exposure in pregnancy. Environ Int. 2019;130:104872.

    Article  CAS  Google Scholar 

  24. Chen C-HS, Kuo TC, Kuo HC, Tseng YJ, Kuo CH, Yuan TH, et al. Metabolomics of children and adolescents exposed to industrial carcinogenic pollutants. Environmental science & technology. 2019;53(9):5454–65.

    Article  CAS  Google Scholar 

  25. Walker, D.I., et al., Metabolomic assessment of exposure to near-highway ultrafine particles. Journal of exposure science & environmental epidemiology, 2018: p. 1.

  26. Yuan T-H, et al. Metabolic profiling of residents in the vicinity of a petrochemical complex. Sci Total Environ. 2016;548:260–9.

    Article  Google Scholar 

  27. Menni C, Metrustry SJ, Mohney RP, Beevers S, Barratt B, Spector TD, et al. Circulating levels of antioxidant vitamins correlate with better lung function and reduced exposure to ambient pollution. Am J Respir Crit Care Med. 2015;191(10):1203–7.

    Article  CAS  Google Scholar 

  28. Huang, Q., Hu D., Wang X., Chen Y., Wu Y., Pan L., Li H., Zhang J., Deng F., Guo X., Shen H., The modification of indoor PM2.5 exposure to chronic obstructive pulmonary disease in Chinese elderly people: a meet-in-metabolite analysis. Environ Int, 2018. 121: p. 1243–1252.

  29. Chen C-HS, Yuan TH, Shie RH, Wu KY, Chan CC. Linking sources to early effects by profiling urine metabolome of residents living near oil refineries and coal-fired power plants. Environ Int. 2017;102:87–96.

    Article  CAS  Google Scholar 

  30. Wang Z, Zheng Y, Zhao B, Zhang Y, Liu Z, Xu J, et al. Human metabolic responses to chronic environmental polycyclic aromatic hydrocarbon exposure by a metabolomic approach. J Proteome Res. 2015;14(6):2583–93.

    Article  CAS  Google Scholar 

  31. Kuo C-H, Wang KC, Tian TF, Tsai MH, Chiung YM, Hsiech CM, et al. Metabolomic characterization of laborers exposed to welding fumes. Chem Res Toxicol. 2012;25(3):676–86.

    Article  Google Scholar 

  32. Liang DH, et al. Use of high-resolution metabolomics for the identification of metabolic signals associated with traffic-related air pollution. Environ Int. 2018;120:145–54.

    Article  CAS  Google Scholar 

  33. Jeong A, Fiorito G, Keski-Rahkonen P, Imboden M, Kiss A, Robinot N, et al. Perturbation of metabolic pathways mediates the association of air pollutants with asthma and cardiovascular diseases. Environ Int. 2018;119:334–45.

    Article  CAS  Google Scholar 

  34. Maniscalco M, Paris D, Melck D, Chiariello N, di Napoli F, Manno M, et al. Biomonitoring of workers using nuclear magnetic resonance-based metabolomics of exhaled breath condensate: a pilot study. Toxicol Lett. 2018;298:4–12.

    Article  CAS  Google Scholar 

  35. Cheng W, Duncan KE, Ghio AJ, Ward-Caviness C, Karoly ED, Diaz-Sanchez D, et al. Changes in metabolites present in lung-lining fluid following exposure of humans to ozone. Toxicol Sci. 2018;163(2):430–9.

    Article  CAS  Google Scholar 

  36. Haggarty J, Burgess KE. Recent advances in liquid and gas chromatography methodology for extending coverage of the metabolome. Curr Opin Biotechnol. 2017;43:77–85.

    Article  CAS  Google Scholar 

  37. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, et al. HMDB: the Human Metabolome Database. Nucleic Acids Res. 2007;35(Database issue):D521–6.

    Article  CAS  Google Scholar 

  38. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28(1):27–30.

    Article  CAS  Google Scholar 

  39. Smith CA, Maille GO??, Want EJ, Qin C, Trauger SA, Brandon TR, et al. METLIN: a metabolite mass spectral database. Ther Drug Monit. 2005;27(6):747–51.

    Article  CAS  Google Scholar 

  40. Griffin JL, Nicholls AW, Daykin CA, Heald S, Keun HC, Schuppe-Koistinen I, et al. Standard reporting requirements for biological samples in metabolomics experiments: mammalian/in vivo experiments. Metabolomics. 2007;3(3):179–88.

    Article  CAS  Google Scholar 

  41. Spicer RA, Salek R, Steinbeck C. Compliance with minimum information guidelines in public metabolomics repositories. Scientific data. 2017;4:170137.

    Article  Google Scholar 

  42. Viant MR, Kurland IJ, Jones MR, Dunn WB. How close are we to complete annotation of metabolomes? Curr Opin Chem Biol. 2017;36:64–9.

    Article  CAS  Google Scholar 

  43. Barnes S, Benton HP, Casazza K, Cooper SJ, Cui X, du X, et al. Training in metabolomics research. I. Designing the experiment, collecting and extracting samples and generating metabolomics data. J Mass Spectrom. 2016;51(7):461–75.

    Article  CAS  Google Scholar 

  44. Barnes S, Benton HP, Casazza K, Cooper SJ, Cui X, du X, et al. Training in metabolomics research. II. Processing and statistical analysis of metabolomics data, metabolite identification, pathway analysis, applications of metabolomics and its future. J Mass Spectrom. 2016;51(8):535–48.

    Article  CAS  Google Scholar 

  45. Di Guida R, et al. Non-targeted UHPLC-MS metabolomic data processing methods: a comparative investigation of normalisation, missing value imputation, transformation and scaling. Metabolomics. 2016;12(5):93.

    Article  Google Scholar 

  46. Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64(4):383–94.

    Article  Google Scholar 

  47. Lin, E.Z., et al., The fresh air wristband: a wearable air pollutant sampler. Environmental Science & Technology Letters, 2020.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Jin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Susceptibility Factors in Environmental Health

Supplementary Information

ESM 1

(XLSX 580 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, L., Godri Pollitt, K.J., Liew, Z. et al. Use of Untargeted Metabolomics to Explore the Air Pollution-Related Disease Continuum. Curr Envir Health Rpt 8, 7–22 (2021). https://doi.org/10.1007/s40572-020-00298-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-020-00298-x

Keywords

Navigation