Skip to main content

Advertisement

Log in

Machine Learning Within Studies of Early-Life Environmental Exposures and Child Health: Review of the Current Literature and Discussion of Next Steps

  • Early Life Environmental Health (H Volk & J Buckley, Section Editors)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The goal of this article is to review the use of machine learning (ML) within studies of environmental exposures and children’s health, identify common themes across studies, and provide recommendations to advance their use in research and practice.

Recent Findings

We identified 42 articles reporting upon the use of ML within studies of environmental exposures and children’s health between 2017 and 2019. The common themes among the articles were analysis of mixture data, exposure prediction, disease prediction and forecasting, analysis of complex data, and causal inference.

Summary

With the increasing complexity of environmental health data, we anticipate greater use of ML to address the challenges that cannot be handled by traditional analytics. In order for these methods to beneficially impact public health, the ML techniques we use need to be appropriate for our study questions, rigorously evaluated and reported in a way that can be critically assessed by the scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Murphy KP. Machine learning: a probabilistic perspective: MIT press; 2012.

    Google Scholar 

  2. Bi Q, Goodman KE, Kaminsky J, Lessler J. What Is Machine Learning: a Primer for the Epidemiologist. Am J Epidemiol. 2019; 188(12): 2222-39 A clear and comprehensive description of multiple machine learning algorithms from an epidemiologic perspective and describes some of the opportunities and challenges of the wider adoption of machine learning methods.

  3. Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP. Machine learning in cardiovascular medicine: are we there yet? Heart. 2018;104(14):1156–64.

    PubMed  Google Scholar 

  4. Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science. 2015;349(6245):255–60.

    CAS  PubMed  Google Scholar 

  5. Bellinger C, Mohomed Jabbar MS, Zaiane O, Osornio-Vargas A. A systematic review of data mining and machine learning for air pollution epidemiology. BMC Public Health. 2017;17(1):907.

    PubMed  PubMed Central  Google Scholar 

  6. Shmueli G. To explain or to predict? J Stat Sci. 2010;25(3):289–310.

    Google Scholar 

  7. Manrai AK, Cui Y, Bushel PR, Hall M, Karakitsios S, Mattingly CJ, et al. Informatics and data analytics to support Exposome-based discovery for public health. Annu Rev Public Health. 2017;38:279–94.

    PubMed  Google Scholar 

  8. Wild CP. The exposome: from concept to utility. Int J Epidemiol. 2012;41(1):24–32.

    PubMed  Google Scholar 

  9. Stingone JA, Buck Louis GM, Nakayama SF, Vermeulen RC, Kwok RK, Cui Y, et al. Toward greater implementation of the Exposome research paradigm within environmental epidemiology. Annu Rev Public Health. 2017;38:315–27.

    PubMed  PubMed Central  Google Scholar 

  10. Jacobson LP, Lau B, Catellier D, Parker CB. An environmental influences on child health outcomes viewpoint of data analysis centers for collaborative study designs. Curr Opin Pediatr. 2018;30(2):269–75.

    PubMed  PubMed Central  Google Scholar 

  11. Stingone JA, Mervish N, Kovatch P, McGuinness DL, Gennings C, Teitelbaum SL. Big and disparate data: considerations for pediatric consortia. Curr Opin Pediatr. 2017;29(2):231–9.

    PubMed  PubMed Central  Google Scholar 

  12. Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van Calster B. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol. 2019;110:12–22.

    PubMed  Google Scholar 

  13. Mooney SJ, Pejaver V. Big data in public health: terminology, machine learning, and privacy. Annu Rev Public Health. 2018;39:95–112.

    PubMed  Google Scholar 

  14. James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning: with Applications in R. New York: Springer; 2013.

  15. Liu SH, Bobb JF, Claus Henn B, Schnaas L, Tellez-Rojo MM, Gennings C, et al. Modeling the health effects of time-varying complex environmental mixtures: mean field variational Bayes for lagged kernel machine regression. Environmetrics. 2018;29(4):e2504.

  16. Liu SH, Bobb JF, Claus Henn B, Gennings C, Schnaas L, Tellez-Rojo M, et al. Bayesian varying coefficient kernel machine regression to assess neurodevelopmental trajectories associated with exposure to complex mixtures. Stat Med. 2018;37(30):4680–94.

    PubMed  PubMed Central  Google Scholar 

  17. Liu SH, Bobb JF, Lee KH, Gennings C, Claus Henn B, Bellinger D, et al. Lagged kernel machine regression for identifying time windows of susceptibility to exposures of complex mixtures. Biostatistics. 2018;19(3):325–41 Reports on the development of an approach that seeks to account for both mixture effects and windows of susceptibility.

    PubMed  Google Scholar 

  18. Luo Y, Li Z, Guo H, Cao H, Song C, Guo X, et al. Predicting congenital heart defects: a comparison of three data mining methods. PLoS One. 2017;12(5):e0177811.

    PubMed  PubMed Central  Google Scholar 

  19. Sewe MO, Tozan Y, Ahlm C, Rocklöv J. Using remote sensing environmental data to forecast malaria incidence at a rural district hospital in Western Kenya. Sci Rep. 2017;7(1):2589.

    PubMed  PubMed Central  Google Scholar 

  20. Oulhote Y, Coull B, Bind MA, Debes F, Nielsen F, Tamayo I, et al. Joint and independent neurotoxic effects of early life exposures to a chemical mixture: A multi-pollutant approach combining ensemble learning and g-computation. Environ Epidemiol. 2019;3(5) Example of integrating machine learning and causal inference approaches to analyze environmental mixtures.

  21. Silva E, Rajapakse N, Kortenkamp A. Something from "nothing"--eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environ Sci Technol. 2002;36(8):1751–6.

    CAS  PubMed  Google Scholar 

  22. Rajapakse N, Silva E, Kortenkamp A. Combining xenoestrogens at levels below individual no-observed-effect concentrations dramatically enhances steroid hormone action. Environ Health Perspect. 2002;110(9):917–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun Z, Tao Y, Li S, Ferguson KK, Meeker JD, Park SK, et al. Statistical strategies for constructing health risk models with multiple pollutants and their interactions: possible choices and comparisons. Environ Health. 2013;12(1):85.

    PubMed  PubMed Central  Google Scholar 

  24. Braun JM, Gennings C, Hauser R, Webster TF. What can epidemiological studies tell us about the impact of chemical mixtures on human health? Environ Health Perspect. 2016;124(1):A6–9.

    PubMed  PubMed Central  Google Scholar 

  25. Chen Y, Wu F, Liu X, Parvez F, LoIacono NJ, Gibson EA, et al. Early life and adolescent arsenic exposure from drinking water and blood pressure in adolescence. Environ Res. 2019;178:108681.

    CAS  PubMed  Google Scholar 

  26. Coker E, Chevrier J, Rauch S, Bradman A, Obida M, Crause M, et al. Association between prenatal exposure to multiple insecticides and child body weight and body composition in the VHEMBE South African birth cohort. Environ Int. 2018;113:122–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Deyssenroth MA, Gennings C, Liu SH, Peng S, Hao K, Lambertini L, et al. Intrauterine multi-metal exposure is associated with reduced fetal growth through modulation of the placental gene network. Environ Int. 2018;120:373–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kupsco A, Kioumourtzoglou MA, Just AC, Amarasiriwardena C, Estrada-Gutierrez G, Cantoral A, et al. Prenatal metal concentrations and childhood Cardiometabolic risk using Bayesian kernel machine regression to assess mixture and interaction effects. Epidemiology. 2019;30(2):263–73.

    PubMed  PubMed Central  Google Scholar 

  29. Ni W, Yang W, Jin L, Liu J, Li Z, Wang B, et al. Levels of polycyclic aromatic hydrocarbons in umbilical cord and risk of orofacial clefts. Sci Total Environ. 2019;678:123–32.

    CAS  PubMed  Google Scholar 

  30. Valeri L, Mazumdar MM, Bobb JF, Claus Henn B, Rodrigues E, Sharif OIA, et al. The joint effect of prenatal exposure to metal mixtures on neurodevelopmental outcomes at 20-40 months of age: evidence from Rural Bangladesh. Environ Health Perspect. 2017;125(6):067015.

    PubMed  PubMed Central  Google Scholar 

  31. Cilluffo G, Ferrante G, Fasola S, Montalbano L, Malizia V, Piscini A, et al. Associations of greenness, greyness and air pollution exposure with children's health: a cross-sectional study in Southern Italy. Environ Health. 2018;17(1):86.

    PubMed  PubMed Central  Google Scholar 

  32. Grant LP, Gennings C, Wickham EP, Chapman D, Sun S, Wheeler DC. Modeling pediatric body mass index and neighborhood environment at different spatial scales. Int J Environ Res Public Health. 2018;15(3):473.

  33. Hou Q, Huang L, Ge X, Yang A, Luo X, Huang S, et al. Associations between multiple serum metal exposures and low birth weight infants in Chinese pregnant women: a nested case-control study. Chemosphere. 2019;231:225–32.

    CAS  PubMed  Google Scholar 

  34. Iszatt N, Janssen S, Lenters V, Dahl C, Stigum H, Knight R, et al. Environmental toxicants in breast milk of Norwegian mothers and gut bacteria composition and metabolites in their infants at 1 month. Microbiome. 2019;7(1):34.

    PubMed  PubMed Central  Google Scholar 

  35. Lenters V, Iszatt N, Forns J, Čechová E, Kočan A, Legler J, et al. Early-life exposure to persistent organic pollutants (OCPs, PBDEs, PCBs, PFASs) and attention-deficit/hyperactivity disorder: a multi-pollutant analysis of a Norwegian birth cohort. Environ Int. 2019;125:33–42 Described two-stage approach that couples feature selection with more traditional etiologic modelling.

    CAS  PubMed  Google Scholar 

  36. Philippat C, Heude B, Botton J, Alfaidy N, Calafat AM, Slama R, et al. Prenatal exposure to select phthalates and phenols and associations with fetal and placental weight among male births in the EDEN cohort (France). Environ Health Perspect. 2019;127(1):17002.

    CAS  PubMed  Google Scholar 

  37. Woods MM, Lanphear BP, Braun JM, McCandless LC. Gestational exposure to endocrine disrupting chemicals in relation to infant birth weight: a Bayesian analysis of the HOME study. Environ Health. 2017;16(1):115.

    PubMed  PubMed Central  Google Scholar 

  38. Agier L, Basagaña X, Maitre L, Granum B, Bird PK, Casas M, et al. Early-life exposome and lung function in children in Europe: an analysis of data from the longitudinal, population-based HELIX cohort. Lancet Planet Health. 2019;3(2):e81–92.

    PubMed  Google Scholar 

  39. Warembourg C, Maitre L, Tamayo-Uria I, Fossati S, Roumeliotaki T, Aasvang GM, et al. Early-life environmental exposures and blood pressure in children. J Am Coll Cardiol. 2019;74(10):1317–28.

    CAS  PubMed  Google Scholar 

  40. Heggeseth BC, Holland N, Eskenazi B, Kogut K, Harley KG. Heterogeneity in childhood body mass trajectories in relation to prenatal phthalate exposure. Environ Res. 2019;175:22–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Stingone JA, Pandey OP, Claudio L, Pandey G. Using machine learning to identify air pollution exposure profiles associated with early cognitive skills among U.S. children. Environ Pollut. 2017;230:730–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bobb JF, Valeri L, Claus Henn B, Christiani DC, Wright RO, Mazumdar M, et al. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics. 2015;16(3):493–508.

    PubMed  Google Scholar 

  43. Coull BA, Bobb JF, Wellenius GA, Kioumourtzoglou MA, Mittleman MA, Koutrakis P, et al. Part 1. Statistical learning methods for the effects of multiple air pollution constituents. Res Rep Health Eff Inst. 2015;183(Pt 1–2):5–50.

    Google Scholar 

  44. Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B Methodol. 1996;58(1):267–88.

    Google Scholar 

  45. Gibson EA, Goldsmith J, Kioumourtzoglou MA. Complex mixtures, complex analyses: an emphasis on interpretable results. Curr Environ Health Rep. 2019;6(2):53–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sinisi SE, van der Laan MJ. Deletion/substitution/addition algorithm in learning with applications in genomics. Stat Appl Genet Mol Biol. 2004;3:18.

    Google Scholar 

  47. Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regression trees. New York: Chapman & Hall; 1984.

    Google Scholar 

  48. Breiman L. Mach Learn. 2001;45:5–32. https://doi.org/10.1023/A:1010933404324.

    Article  Google Scholar 

  49. Boland MR, Polubriaginof F, Tatonetti NP. Development of a machine learning algorithm to classify drugs of unknown fetal effect. Sci Rep. 2017;7(1):12839.

    PubMed  PubMed Central  Google Scholar 

  50. Brokamp C, Jandarov R, Rao MB, LeMasters G, Ryan P. Exposure assessment models for elemental components of particulate matter in an urban environment: a comparison of regression and random forest approaches. Atmos Environ (1994). 2017;151:1–11.

    CAS  Google Scholar 

  51. Brokamp C, Jandarov R, Hossain M, Ryan P. Predicting Daily Urban Fine Particulate Matter Concentrations Using a Random Forest Model. Environ Sci Technol. 2018;52(7):4173–9 An example of machine learning used to improve exposure assessment of air pollutants.

    CAS  PubMed  Google Scholar 

  52. Ghaedrahmat Z, Vosoughi M, Tahmasebi Birgani Y, Neisi A, Goudarzi G, Takdastan A. Prediction of ozone in the respiratory system of children using the artificial neural network model and with selection of input based on gamma test, Ahvaz, Iran. Environ Sci Pollut Res Int. 2019;26(11):10941–50.

    CAS  PubMed  Google Scholar 

  53. Kloog I, Novack L, Erez O, Just AC, Raz R. Associations between ambient air temperature, low birth weight and small for gestational age in term neonates in southern Israel. Environ Health. 2018;17(1):76.

    PubMed  PubMed Central  Google Scholar 

  54. Tognola G, Bonato M, Chiaramello E, Fiocchi S, Magne I, Souques M, et al. Use of machine learning in the analysis of indoor ELF MF exposure in children. Int J Environ Res Public Health. 2019;16(7):1230.

  55. Jain A. Data clustering: 50 years beyond K-means. Pattern Recogn Lett. 2010;31(8):651–66.

    Google Scholar 

  56. Deng H, Urman R, Gilliland FD, Eckel SP. Understanding the importance of key risk factors in predicting chronic bronchitic symptoms using a machine learning approach. BMC Med Res Methodol. 2019;19(1):70.

    PubMed  PubMed Central  Google Scholar 

  57. Hassan WM, Al-Ayadhi L, Bjørklund G, Alabdali A, Chirumbolo S, El-Ansary A. The use of multi-parametric biomarker profiles may increase the accuracy of ASD prediction. J Mol Neurosci. 2018;66(1):85–101.

    CAS  PubMed  Google Scholar 

  58. Zhong R, Wu Y, Cai Y, Wang R, Zheng J, Lin D, et al. Forecasting hand, foot, and mouth disease in Shenzhen based on daily level clinical data and multiple environmental factors. Biosci Trends. 2018;12(5):450–5.

    PubMed  Google Scholar 

  59. Rao M, George LA, Shandas V, Rosenstiel TN. Assessing the potential of land use modification to mitigate ambient NO2 and its consequences for respiratory health. Int J Environ Res Public Health. 2017;14(7):750.

  60. Hosseini A, Buonocore CM, Hashemzadeh S, Hojaiji H, Kalantarian H, Sideris C, et al. Feasibility of a secure wireless sensing smartwatch application for the self-management of pediatric asthma. Sensors (Basel). 2017;17(8):1780.

  61. Eguchi A, Sakurai K, Watanabe M, Mori C. Exploration of potential biomarkers and related biological pathways for PCB exposure in maternal and cord serum: a pilot birth cohort study in Chiba, Japan. Environ Int. 2017;102:157–64.

    CAS  PubMed  Google Scholar 

  62. Fernández D, Sram RJ, Dostal M, Pastorkova A, Gmuender H, Choi H. Modeling unobserved heterogeneity in susceptibility to ambient benzo[a]pyrene concentration among children with allergic asthma using an unsupervised learning algorithm. Int J Environ Res Public Health. 2018;15(1):106.

  63. Huang LS, Cory-Slechta DA, Cox C, Thurston SW, Shamlaye CF, Watson GE, et al. Analysis of nonlinear associations between prenatal Methylmercury exposure from fish consumption and neurodevelopmental outcomes in the Seychelles Main cohort at 17 years. Stoch Env Res Risk A. 2018;32(4):893–904.

    Google Scholar 

  64. Lalonde A, Love T. Using the Seychelles child development study to cluster multiple outcomes into domains to improve estimation of the overall effect of mercury on neurodevelopment. Math Appl. 2018;7(1):53–62.

    PubMed  PubMed Central  Google Scholar 

  65. Ren Z, Zhu J, Gao Y, Yin Q, Hu M, Dai L, et al. Maternal exposure to ambient PM10 during pregnancy increases the risk of congenital heart defects: evidence from machine learning models. Sci Total Environ. 2018;630:1–10.

    CAS  PubMed  Google Scholar 

  66. Herrera R, Berger U, von Ehrenstein OS, Díaz I, Huber S, Moraga Muñoz D, et al. Estimating the causal impact of proximity to gold and copper mines on respiratory diseases in Chilean children: an application of targeted maximum likelihood estimation. Int J Environ Res Public Health. 2017;15(1) Example of targeted learning, integration of machine learning and causal inference, within the context of children’s environmental health.

  67. van der Laan MJ, Polley EC, Hubbard AE. Super learner. Stat Appl Genet Mol Biol. 2007;6:25.

    Google Scholar 

  68. Hamra GB, Buckley JP. Environmental exposure mixtures: questions and methods to address them. Curr Epidemiol Rep. 2018;5(2):160–5.

    PubMed  PubMed Central  Google Scholar 

  69. Williams-DeVane CR, Reif DM, Hubal EC, Bushel PR, Hudgens EE, Gallagher JE, et al. Decision tree-based method for integrating gene expression, demographic, and clinical data to determine disease endotypes. BMC Syst Biol. 2013;7:119.

    PubMed  PubMed Central  Google Scholar 

  70. Weichenthal S, Hatzopoulou M, Brauer M. A picture tells a thousand...exposures: opportunities and challenges of deep learning image analyses in exposure science and environmental epidemiology. Environ Int. 2019;122:3–10 Summarizes how improvements in imaging technology will advance exposure assessment.

    PubMed  Google Scholar 

  71. Chalghaf B, Chemkhi J, Mayala B, Harrabi M, Benie GB, Michael E, et al. Ecological niche modeling predicting the potential distribution of Leishmania vectors in the Mediterranean basin: impact of climate change. Parasit Vectors. 2018;11(1):461.

    PubMed  PubMed Central  Google Scholar 

  72. Lee BK, Lessler J, Stuart EA. Improving propensity score weighting using machine learning. Stat Med. 2010;29(3):337–46.

    PubMed  PubMed Central  Google Scholar 

  73. Bentley R, Baker E, Simons K, Simpson JA, Blakely T. The impact of social housing on mental health: longitudinal analyses using marginal structural models and machine learning-generated weights. Int J Epidemiol. 2018;47(5):1414–22.

    PubMed  Google Scholar 

  74. Blakely T, Lynch J, Simons K, Bentley R, Rose S. Reflection on modern methods: when worlds collide-prediction, machine learning and causal inference. Int J Epidemiol. 2019; dyz132. https://doi.org/10.1093/ije/dyz132.

  75. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019;366(6464):447–53.

    CAS  PubMed  Google Scholar 

  76. Vera LA, Walker D, Murphy M, Mansfield B, Siad LM, Ogden J. When data justice and environmental justice meet: formulating a response to extractive logic through environmental data justice. Inf Commun Soc. 2019;22(7):1012–28.

    PubMed  PubMed Central  Google Scholar 

  77. Hallgren KA. Conducting simulation studies in the R programming environment. Tutor Quant Methods Psychol. 2013;9(2):43–60.

    PubMed  PubMed Central  Google Scholar 

  78. Lampa E, Lind L, Lind PM, Bornefalk-Hermansson A. The identification of complex interactions in epidemiology and toxicology: a simulation study of boosted regression trees. Environ Health. 2014;13:57 Example of using simulation analyses to support use of machine learning methods for environmental health applications.

    PubMed  PubMed Central  Google Scholar 

  79. Lind L, Salihovic S, Lampa E, Lind PM. Mixture effects of 30 environmental contaminants on incident metabolic syndrome-a prospective study. Environ Int. 2017;107:8–15.

    CAS  PubMed  Google Scholar 

  80. Platt RW, Grandi SM. Machine learning for the prediction of postpartum complications is promising, but needs rigorous evaluation. Bjog. 2019;126(6):710.

    CAS  PubMed  Google Scholar 

  81. Holland N. Future of environmental research in the age of epigenomics and exposomics. Rev Environ Health. 2017;32(1–2):45–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Van Calster B, McLernon DJ, van Smeden M, Wynants L, Steyerberg EW, initiative TGEdtapmotS. Calibration: the Achilles heel of predictive analytics. BMC Med. 2019;17(1):230.

    PubMed  PubMed Central  Google Scholar 

  83. White AJ, Keller JP, Zhao S, Carroll R, Kaufman JD, Sandler DP. Air pollution, clustering of particulate matter components, and breast cancer in the sister study: a U.S.-wide cohort. Environ Health Perspect. 2019;127(10):107002.

    PubMed  PubMed Central  Google Scholar 

  84. Naimi AI, Platt RW, Larkin JC. Machine learning for fetal growth prediction. Epidemiology. 2018;29(2):290–8.

    PubMed  PubMed Central  Google Scholar 

  85. Berg V, Nøst TH, Pettersen RD, Hansen S, Veyhe AS, Jorde R, et al. Persistent organic pollutants and the association with maternal and infant thyroid homeostasis: a multipollutant assessment. Environ Health Perspect. 2017;125(1):127–33.

    CAS  PubMed  Google Scholar 

  86. Serrano-Lomelin J, Nielsen CC, Jabbar MSM, Wine O, Bellinger C, Villeneuve PJ, et al. Interdisciplinary-driven hypotheses on spatial associations of mixtures of industrial air pollutants with adverse birth outcomes. Environ Int. 2019;131:104972.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanette A. Stingone.

Ethics declarations

Conflict of Interest

Dr. Stingone reports funding from the NIEHS (ES027022) during the conduct of the study. The other author declares that there is no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Early Life Environmental

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oskar, S., Stingone, J.A. Machine Learning Within Studies of Early-Life Environmental Exposures and Child Health: Review of the Current Literature and Discussion of Next Steps. Curr Envir Health Rpt 7, 170–184 (2020). https://doi.org/10.1007/s40572-020-00282-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-020-00282-5

Keywords

Navigation