Skip to main content
Log in

Thermal Conductivity Degradation and Microstructural Damage Characterization in Low-Dose Ion Beam-Irradiated 3C-SiC

  • Symposium
  • Published:
Metallurgical and Materials Transactions E

Abstract

This study assesses the impact of low-dose and low-temperature irradiation on the properties of cubic silicon carbide (3C-SiC). 3C-SiC was irradiated with Kr ions to different fluences at 420 K (147 °C). Raman spectroscopy was used to investigate the impact of irradiation-induced defects on vibrational modes and time-domain thermoreflectance (TDTR) was used to measure thermal conductivity. We observe a noticeable reduction in thermal conductivity with increasing fluence. Analysis of Raman spectra reveals the longitudinal optical (LO) and transverse optical (TO) modes with noticeable peak broadening of LO mode with increasing dosage. We also notice a decrease of ratio of peak intensities of LO and TO modes in irradiated samples. We observe a correlation between the thermal conductivity reduction and the decrease in the peak intensity ratio and attribute this to the accumulation of charged vacancy defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L.L. Snead, T. Nozawa, Y. Katoh, T-S Byun, S. Kondo, and D.A. Petti: J. Nucl. Mater., 2007, vol. 371, pp. 329–77.

    Article  Google Scholar 

  2. M.B-Belgacem, V. Richet, K.A. Terrani, Y. Katoh, and L.L. Snead: J. Nucl. Mater., 2014, vol. 447, pp. 125–42

  3. T. Hinoki, Y. Katoh, L.L. Snead, H-C Jung, K. Ozawa, H. Katsui, Z-H. Zhong, S. Kondo, Y-H. Park, C. Shih, C.M. Parish, R.A. Meisner, and A. Hasegawa: Mater. Trans., JIM, 2013, vol. 54, pp. 472–76

  4. Y. Katoh, L.L. Snead, I. Szlufarska and W.J. Weber: Curr. Opin. Solid State Mater. Sci., 2012, vol. 16, pp. 143-52.

    Article  Google Scholar 

  5. L.L. Snead, T. Nozawa, M. Ferraris, Y. Katoh, R. Shinavski, M. Sawan: J. Nucl. Mater., 2011, vol. 417, pp. 330-39.

    Article  Google Scholar 

  6. F. Porz, G. Grathwohl and F. Thümmler: Mater. Sci. Eng., 1985, vol. 71, pp. 273-82.

    Article  Google Scholar 

  7. D.A. Petti, P.A. Demkowicz, J.T. Maki, R.R. Hobbins: Compr. Nucl. Mater., 2012, vol. 3, pp. 151-13.

    Google Scholar 

  8. B.P. Collin, D.A. Petti, P.A. Demkowicz, J.T. Maki: Nucl. Eng. Des., 2016, vol. 301, pp. 378-90.

    Article  Google Scholar 

  9. G.K. Miller, D.A. Petti, J.T. Maki, D.L. Knudson: J. Nucl. Mater., 2008, vol. 374, pp. 129-37.

    Article  Google Scholar 

  10. G.E. Youngblood and D.J. Senor: Oak Ridge Natl. Lab., [Rep. DOE/ER-0313/22] ORNL (U. S.), 1997, pp. 75–80

  11. D.J. Senor, G.E. Youngblood and L.R. Greenwood: J. Nucl. Mater., 2003, vol. 317(2), pp. 145-59.

    Article  Google Scholar 

  12. M. Rohde: J. Nucl. Mater., 1991, vol. 182, pp. 87-92.

    Article  Google Scholar 

  13. T. Maruyama and M. Harayama: J. Nucl. Mater., 2004, vol. 329-333, pp. 1022-028.

    Article  Google Scholar 

  14. J.P. Crocombette and L. Proville: Appl. Phys. Lett., 2011, vol. 98(19), pp. 191905(1)-(3)

  15. Y. Katoh, L.L. Snead, C.H. Henager Jr., A. Hasegawa, A. Kohyama, B. Riccardi and H. Hegeman: J. Nucl. Mater., 2007, vol. 367–370, Part-A, pp. 659–71

  16. C.P. Deck, H.E. Khalifa, B. Sammuli, and C.A. Back: Sci. Technol. Nucl. Install., 2013, vol. 2013, pp. 1-10.

    Article  Google Scholar 

  17. S. B-Sitton, K. Barrett, I. van Rooyen, D. Hurley, and M. Khafizov: Nucl. Eng. Int., 2013, vol. 58, pp. 37–40.

  18. S. Ray, P. Xu, E. Lahoda, L. Hallstadius, F. Boylan, and S. Johnson: Top Fuel Conference, 2015, pp. 57–69

  19. L. Liu, Y.M. Yiu, T. K. Sham, L. Zhang and Y. Zhang: J. Phys. Chem. C, 2010, vol. 114(15), pp. 6966–975.

    Article  Google Scholar 

  20. E. Sörman, N.T. Son, W.M. Chen, O. Kordina, C. Hallin, and E. Janzén: Phys. Rev. B, 2000, vol. 61(4), pp. 2613–620.

    Article  Google Scholar 

  21. N. T. Son, E. Janzén, J. Isoya, N. Morishita, H. Hanaya, H. Takizawa, T. Ohshima, and A. Gali: Phys. Rev. B, 2009, vol. 80, pp. 1-8.

    Google Scholar 

  22. T. Ohshima, S. Onoda, N. Iwamoto, T. Makino, M. Arai, Y. Tanaka, and Y. Hijikata, eds.: Physics and Technology of Silicon Carbide Devices, InTech, 2012, pp. 379–02

  23. S. Sorieul, J.-M. Costantini, L. Gosmain, L. Thomé, J.-J. Grob, J. Phys.: Condens. Matter 18, 5235–5251 (2006)

    Google Scholar 

  24. H. Yugami, S. Nakashima and A. Mitsuishi: J. Appl. Phys., 1987, vol. 61(1), pp. 354-58.

    Article  Google Scholar 

  25. S. Nakashima, Y. Nakatake and Y. Ishida: Phys. Rev. B: Condens. Matter Mater. Phys., 2001, vol. 308, pp. 684-86.

    Google Scholar 

  26. G. Irmer, V.V. Toporov and B.H. Bairamov: Phys. Status Solidi B, 1983, vol. 119(2), pp. 595-03.

    Article  Google Scholar 

  27. T. Koyanagi,, M.J. Lance and Y. Katoh: Scr. Mater., 2016, vol. 125, pp. 58-62.

    Article  Google Scholar 

  28. S. Nakashima and M. Hangyo: Solid State Commun., 1991, vol. 80, pp. 21-24.

    Article  Google Scholar 

  29. S. Nakashima, K. Kisoda, H. Niizuma, and H. Harima: Phys. B (Amsterdam), 1996, vol. 219–220, pp. 371–73.

  30. H.E. Kadiri, Z.N. Utegulov, M. Khafizov, M. Asle Zaeem, M. Mamivand, A.L. Oppedal, K. Enakoutsa, M. Cherkaoui, R.H. Graham and A. Arockiasamy: Acta Mater., 2013, vol. 61, pp. 3923-935.

    Article  Google Scholar 

  31. C. Hazelton, J. Rice, L.L. Snead and S.J. Zinkle: J. Nucl. Mater., 1998, vol. 253, pp. 190-95.

    Article  Google Scholar 

  32. C. Jensen, M. Chirtoc, N. Horny, J.S. Antoniow, H. Pron, and H. Ban: J. Appl. Phys., 2013, vol. 114, pp. 133509(1)–(9)

  33. M. Khafizov, C. Yablinsky, T.R. Allen and D.H. Hurley: Nucl. Instrum. Methods Phys. Res., Sect. B, 2014, vol. 325, pp. 11-14.

    Article  Google Scholar 

  34. P.B. Weisensee, J.P. Feser and D.G. Cahill: J. Nucl. Mater., 2013, vol. 443(1-3), pp. 212-17.

    Article  Google Scholar 

  35. D.G. Cahill: Rev. Sci. Instrum., 2004, vol. 75, pp. 5119-122.

    Article  Google Scholar 

  36. M. Khafizov, I-W. Park, A. Chernatynskiy, L. He, J. Lin, J.J. Moore, D. Swank, T. Lillo, S.R. Phillpot, A.E- Azab and D.H. Hurley: J. Am. Ceram. Soc., 2014, vol. 97, pp. 562-69.

    Article  Google Scholar 

  37. M. Khafizov, V. Chauhan, Y. Wang, F. Riyad, N. Hang, and D.H. Hurley: J. Mater. Res., 2017, vol. 32(1), pp. 204–16

    Article  Google Scholar 

  38. L. David, S. Gomès, G. Carlot, J-P. Roger, D. Fournier, C. Valot, and M. Raynaud: J. Phys. D: Appl. Phys., 2008, vol. 41(3), pp. 035502(1)–(11)

  39. M.F. Riyad, V.S. Chauhan, and M. Khafizov: J. Nucl. Mater., submitted

  40. L.L. Snead, S.J. Zinkle, J.C. Hay and M.C. Osborne: Nucl. Instrum. Methods Phys. Res., Sect. B., 2016, vol. 141, pp. 123-32.

    Article  Google Scholar 

  41. Y. Katoh, L.L. Snead, T. Nozawa, S. Kondo and J.T. Busby: J. Nucl. Mater., 2010, vol. 403(1-3), pp. 48-61.

    Article  Google Scholar 

  42. Y. Katoh, T. Nozawa, C. Shih, K. Ozawa, T. Koyanagi, W. Porter and L.L. Snead: J. Nucl. Mater., 2015. vol. 462, pp. 450-57.

    Article  Google Scholar 

  43. R. Devanathan, W.J. Weber and T.D. de La Rubia: Nucl. Instrum. Methods Phys. Res., Sect. B, 1998, vol. 141(1-4), pp. 118-22.

    Article  Google Scholar 

  44. F. Gao and W.J. Weber: Phys. Rev. B, 2002, vol. 66, 024106.

    Article  Google Scholar 

  45. W. Jiang, W.J. Weber, S. Thevuthasan and V. Shutthanandan: J. Nucl. Mater., 2001, vol. 289(1-2), pp. 96-101.

    Article  Google Scholar 

  46. W. Jiang, Y. Zhang, and W.J. Weber: Phys. Rev. B, 2004, vol. 70(16), pp. 165208(1)–(8)

  47. N. Swaminathan, D. Morgan, and I. Szlufarska: J. Nucl. Mater., 2011, vol. 414 (3), pp. 431-39

    Article  Google Scholar 

  48. J. Cabrero, F. Audubert, R. Pailler, A. Kusiak, J.L. Battaglia and P. Weisbecker: J. Nucl. Mater., 2010 vol. 396(2-3), pp. 202-07.

    Article  Google Scholar 

  49. B.N. Nguyen, F. Gao, C.H. Henager Jr. and R.J. Kurtz, J. Nucl. Mater., 2014, vol. 448(1-3), pp. 364-72.

    Article  Google Scholar 

  50. B. Tyburska-Püschel, Y. Zhai, L. He, C. Liu, A. Boulle, P.M. Voyles, I. Szlufarska and K. Sridharan: J. Nucl. Mater., 2016, vol. 476, pp. 132-39.

    Article  Google Scholar 

  51. J.F. Ziegler and J.P. Biersack: The Stopping and Range of Ions in Matter, Springer, Boston, MA, 1985, pp. 93-129.

    Google Scholar 

  52. G.L. Harris: Properties of Silicon Carbide, 1st ed., INSPEC, LONDON,UK, 1995, pp. 277-281.

    Google Scholar 

  53. T. Wilson: J. Microsc. (Oxford, U. K.), 2011, vol. 244 (2), pp. 113–21

    Article  Google Scholar 

  54. R.E. Shroder, R.J. Nemanich, and J.T. Glass: Phys. Rev. B, 1990, vol. 41(6), pp. 3738-745.

    Article  Google Scholar 

  55. J.C. Burton, L. Sun, F.H. Long, Z.C. Feng and I.T. Ferguson: Phys. Rev. B, 1999, vol. 59(11), pp. 7282-284.

    Article  Google Scholar 

  56. S. Nakashima and H. Harima: Phys. Status Solidi A, 1997, vol. 162(1), pp. 39-64.

    Article  Google Scholar 

  57. F. Tuinstra and J.L. Koenig: J. Chem. Phys., 1970, vol. 53(3), pp. 1126-130.

    Article  Google Scholar 

  58. J.C. Burton, L. Sun, M. Pophristic and S.J. Lukacs: J. Appl. Phys., 1998, vol. 84(11), pp. 6268-273.

    Article  Google Scholar 

  59. D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin and S.R. Phillpot: J. Appl. Phys., 2003, vol. 93, pp. 793-18.

    Article  Google Scholar 

  60. M. Khafizov and D.H. Hurley: J. Appl. Phys., 2011, vol. 110(8), pp. 083525(1)–(7)

  61. C. Wei, X. Zheng, D.G. Cahill, and J.C. Zhao: Rev. Sci. Instrum., 2013, vol. 84(7), pp. 071301(1)–(9)

  62. P.E. Hopkins, J.R. Serrano and L.M. Phinney: Int. J. Thermophys., 2010, vol. 31 (11-12), pp. 2380-393.

    Article  Google Scholar 

  63. A.J. Schmidt, X. Chen, and G. Chen: Rev. Sci. Instrum., 2008, vol. 79(11), pp. 114902(1)–(9)

  64. C.P. Kothandaraman, Heat and Mass Transfer Data Book, 5th edn. (New Age International, New Delhi, 2004)

    Google Scholar 

  65. J. Pakarinen, M. Khafizov, L. He, C. Wetteland, J. Gan, A.T. Nelson, D.H. Hurley, A. El-Azab, and T.R. Allen: J. Nucl. Mater., 2014, vol. 454(1–3), pp. 283-89.

    Article  Google Scholar 

  66. M.E. Levinshtein, S.L. Rumyantsev and M.S. Shur: Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe, 1st ed., JOHN WILEY & SONS, INC., New York, NY, 2001, pp. 93-148.

    Google Scholar 

  67. L.L. Snead, S.J. Zinkle, and D.P. White: J. Nucl. Mater., 2005, vol. 340, pp. 187-02.

    Article  Google Scholar 

  68. S.J. Zinkle: Compr. Nucl. Mater., 2012, vol. 1, pp. 65–98.

    Google Scholar 

  69. V. Heera, J. Stoemenos, R. Kögler and W. Skorupa: J. Appl. Phys., 1995, vol. 77(7), pp. 2999-009.

    Article  Google Scholar 

  70. K. Yoshihara, M. Kato, M. Ichimura, T. Hatayama and T. Ohshima: Mater. Sci. Forum, 2013, Vol. 740-742, pp. 373-76.

    Article  Google Scholar 

  71. J.C. Corelli, J. Hoole and J. Lazzaro: J. Am. Ceram. Soc., 1983, vol. 66(7), pp. 529-38.

    Article  Google Scholar 

  72. R.J. Price: J. Nucl. Mater., 1973, vol. 48(1), pp. 47-57.

    Article  Google Scholar 

  73. W.J. Weber, L.M. Wang, N. Yu, and N.J. Hess: Mater. Sci. Eng., Proc. Conf., 1998, Vol. 253, pp. 62–70

  74. F. Gao, W.J. Weber and R. Devanathan: Nucl. Instrum. Methods Phys. Res., Sect. B, 2002, vol.191(1), pp. 487-96.

    Article  Google Scholar 

  75. W.J. Weber: Nucl. Instrum. Methods Phys. Res., Sect. B, 2000, vol. 166, pp. 98-106.

    Article  Google Scholar 

  76. S.J. Zinkle and N.M. Ghoniem: Fusion Eng. Des., 2000, vol. 51-52, pp. 55-71.

    Article  Google Scholar 

  77. T. Dalibor, G. Pensl, H. Matsunami, T. Kimoto, W. J. Choyke, A. Schöner and N. Nordell: Phys. Status Solidi A, 1997, vol. 162(1), pp. 199-25.

    Article  Google Scholar 

  78. J. Li, L. Porter, and S. Yip: J. Nucl. Mater., 1998, vol. 255(2-3), pp. 139-152.

    Article  Google Scholar 

  79. D.W. Feldman, J.H. Parker Jr., W.J. Choyke and L. Patrick: Phys. Rev., 1968, vol. 173(3), pp. 787-93.

    Article  Google Scholar 

  80. S. Nakashima, H. Katahama, Y. Nakakura and A. Mitsuishi: Phys. Rev. B, 1986, vol. 33(8), pp. 5721-729.

    Article  Google Scholar 

  81. G. Pensl, and W.J. Choyke: Phys. B, 1993, vol. 185(1-4), pp. 264-83.

    Article  Google Scholar 

  82. M. Levalois, I. Lhermitte-Sebire, P. Marie, E. Paumier and J. Vicens: Nucl. Instrum. Methods Phys. Res., Sect. B, 1996, vol. 107(1-4), pp. 239-41.

    Article  Google Scholar 

  83. X. Wang, Y. Zhang, S. Liu, C. Wang and Z. Zhao: Nucl. Instrum. Methods Phys. Res., Sect. B, 2012, vol. 289, pp. 47-51.

    Article  Google Scholar 

  84. N. Swaminathan, P.J. Kamenski, D. Morgan and I. Szlufarska: Acta Mater., 2010, vol. 58 (8), pp. 2843-853.

    Article  Google Scholar 

  85. K.W. Gilkes, H.S. Sands, D.N. Batchelder, and J. Robertson: Appl. Phys. Lett., 1997, vol. 70(15), pp. 980

  86. V.I. Merkulov, J.S. Lannin, C.H. Munro and S.A. Asher: Phys. Rev. Lett., 1997, vol. 78 (25), pp. 4869-872.

    Article  Google Scholar 

  87. P. Mélinon, P. Kéghélian, A. Perez, C. Ray and J. Lermé: Phys. Rev. B, 1998, vol. 58 (24), pp. 16481-6490.

    Article  Google Scholar 

  88. A.C. Ferrari and J. Robertson: Phys. Rev. B, 2000, vol. 61 (20), pp. 14095-4107.

    Article  Google Scholar 

  89. P. Mélinon, X. Blase, P. Kéghélian, A. Perez, and C. Ray: Phys. Rev. B, 2002, vol. 65(12), pp. 125321

Download references

Acknowledgments

The authors would like to acknowledge the support of NRC faculty development program. The TDTR thermal conductivity measurement was supported by the National Science Foundation (NSF) under award # DMR-1237577.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marat Khafizov.

Additional information

Manuscript submitted June 30, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, V.S., Riyad, M.F., Du, X. et al. Thermal Conductivity Degradation and Microstructural Damage Characterization in Low-Dose Ion Beam-Irradiated 3C-SiC. Metallurgical and Materials Transactions E 4, 61–69 (2017). https://doi.org/10.1007/s40553-017-0107-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40553-017-0107-3

Keywords

Navigation