Skip to main content

Advertisement

Log in

Immunological and Non-Immunological Risk Factors in Anaphylaxis

  • Anaphylaxis (R Muñoz Cano, Section Editor)
  • Published:
Current Treatment Options in Allergy Aims and scope Submit manuscript

Abstract

Purpose of Review

Anaphylaxis can lead to fatal reactions, the causes of which are very diverse and whose triggers may not always be identifiable. Traditionally, the etiology of anaphylaxis has been thought to depend mainly on the antigen–IgE interaction, with subsequent activation of effector cells and the release of immune mediators such as tryptase and histamine. However, the physiological mechanisms that cause the cellular degranulation that results in these life-threatening reactions are not completely known. Consequently, fatal reactions may not always be preventable (or treatable).

Recent Findings

Latest research on transcription factors and their influence on the severity of reactions highlight the need for a deeper understanding of the pathophysiology of anaphylaxis. The most relevant and recent findings highlight the importance of inheritance patterns in regulation of tryptase and how this alteration impacts the severity of other conditions.

Summary

The present review examines the main mechanisms involved in anaphylaxis beyond the most widely known ones, ranging from cellular receptors other than IgE to transcription factors and genetic alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Cardona V, Ansotegui IJ, Ebisawa M, El-Gamal Y, Fernandez Rivas M, Fineman S, et al. World allergy organization anaphylaxis guidance 2020. World Allergy Organ J. Elsevier Inc.; 2020;13(10):100472.

  2. Sampson HA, Muñoz-Furlong A, Campbell RL, Adkinson NF, Bock SA, Branum A, et al. Second symposium on the definition and management of anaphylaxis: summary report - Second National Institute of Allergy and Infectious Disease/Food Allergy and Anaphylaxis Network symposium. J Allergy Clin Immunol. 2006;117:391–7.

    Article  Google Scholar 

  3. Blazowski L, Majak P, Kurzawa R, Kuna P, Jerzynska J. A severity grading system of food-induced acute allergic reactions to avoid the delay of epinephrine administration. Allergy Asthma Immunol. 2021;127:462-470.e2.

    Article  CAS  Google Scholar 

  4. Lieberman P, Kemp SF, Oppenheimer J, Lang DM, Bernstein IL, Nicklas RA, et al. The diagnosis and management of anaphylaxis: an updated practice parameter: 2010 updated. J Allergy Clin Immunol. 2010;126(3):477–80.e842.

  5. Muraro A, Roberts G, Clark A, Eigenmann PA, Halken S, Lack G, et al. The management of anaphylaxis in childhood: position paper of the European academy of allergology and clinical immunology. Allergy. 2007;62:857–71.

    Article  CAS  Google Scholar 

  6. Braganza SC, Acworth JP, Mckinnon DRL, Peake JE, Brown AFT. Paediatric emergency department anaphylaxis: different patterns from adults. Arch Dis Child. 2006;91:159–63.

    Article  CAS  Google Scholar 

  7. Grabenhenrich LB, Dölle S, Moneret-Vautrin A, Köhli A, Lange L, Spindler T, et al. Anaphylaxis in children and adolescents: the European Anaphylaxis Registry. J Allergy Clin Immunol. 2016;137:1128-1137.e1.

    Article  Google Scholar 

  8. Brown SGA. Clinical features and severity grading of anaphylaxis. J Allergy Clin Immunol. 2004;114:371–6. https://doi.org/10.1016/j.jaci.2004.04.029.

    Article  Google Scholar 

  9. Pumphrey RSH. Lessons for management of anaphylaxis from a study of fatal reactions. Exp Allergy. 2000;30:1144–50. https://doi.org/10.1046/j.1365-2222.2000.00864.x.

    Article  CAS  Google Scholar 

  10. Summers CW, Pumphrey RS, Woods CN, McDowell G, Pemberton PW, Arkwright PD. Factors predicting anaphylaxis to peanuts and tree nuts in patients referred to a specialist center. J Allergy Clin Immunol. 2008;121(3):632-638.e2. https://doi.org/10.1016/j.jaci.2007.12.003.

    Article  CAS  Google Scholar 

  11. González-Pérez A, Aponte Z, Vidaurre CF, Rodríguez LA. Anaphylaxis epidemiology in patients with and patients without asthma: a United Kingdom database review. J Allergy Clin Immunol. 2010;125(5):1098-1104.e1. https://doi.org/10.1016/j.jaci.2010.02.009.

    Article  Google Scholar 

  12. Muñoz-Cano R, San Bartolome C, Casas-Saucedo R, Araujo G, Gelis S, Ruano-Zaragoza M, et al. Immune-mediated mechanisms in cofactor-dependent food allergy and anaphylaxis: effect of cofactors in basophils and mast cells. Front Immunol. 2021;11: 623071. https://doi.org/10.3389/fimmu.2020.623071.

    Article  CAS  Google Scholar 

  13. Nguyen SMT, Rupprecht CP, Haque A, Pattanaik D, Yusin J, et al. Mechanisms governing anaphylaxis: inflammatory cells, mediators, endothelial gap junctions and beyond. Int J Mol Sci. 2021;22(15):7785. https://doi.org/10.3390/ijms22157785.

    Article  CAS  Google Scholar 

  14. Castells M. Diagnosis and management of anaphylaxis in precision medicine. J Allergy Clin Immunol. Mosby Inc.; 2017;140:321–33.

  15. Labella M, Garcia-Neuer M, Castells M. Application of precision medicine to the treatment of anaphylaxis. Curr Opin Allergy Clin Immunol. 2018;18(3):190–7. https://doi.org/10.1097/ACI.0000000000000435.

    Article  CAS  Google Scholar 

  16. Jimenez-Rodriguez TW, Garcia-Neuer M, Alenazy LA, Castells M. Anaphylaxis in the 21st century: phenotypes, endotypes, and biomarkers. J Asthma Allergy. 2018;11:121–42. https://doi.org/10.2147/JAA.S159411.

    Article  CAS  Google Scholar 

  17. Bagos-Estevez AG, Ledford DK. Anaphylaxis: definition, epidemiology, diagnostic challenges, grading system. Immunol Allergy Clin North Am. 2022;42(1):1–11. https://doi.org/10.1016/j.iac.2021.09.001.

    Article  Google Scholar 

  18. Finkelman FD. Anaphylaxis: lessons from mouse models. J Allergy Clin Immunol. 2007;120(3):506–15; quiz 516–7. https://doi.org/10.1016/j.jaci.2007.07.033.

  19. Bruhns P. Properties of mouse and human IgG receptors and their contribution to disease models. Blood. 2012;119(24):5640–9. https://doi.org/10.1182/blood-2012-01-380121.

    Article  CAS  Google Scholar 

  20. Reber LL, Hernandez JD, Galli SJ. The pathophysiology of anaphylaxis. J Allergy Clin Immunol. 2017;140(2):335–48. https://doi.org/10.1016/j.jaci.2017.06.003.

    Article  CAS  Google Scholar 

  21. Pascal M, Muñoz-Cano R, Milà J, Sanz ML, Diaz-Perales A, Sánchez-López J, García-Moral A, Juan M, Valero A, Yagüe J, Picado C, Bartra J. Nonsteroidal anti-inflammatory drugs enhance IgE-mediated activation of human basophils in patients with food anaphylaxis dependent on and independent of nonsteroidal anti-inflammatory drugs. Clin Exp Allergy. 2016;46(8):1111–9. https://doi.org/10.1111/cea.12735.

    Article  CAS  Google Scholar 

  22. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81(1):1–5. https://doi.org/10.1189/jlb.0306164.

    Article  CAS  Google Scholar 

  23. Dvorak AM, Ishizaka T. Ultrastructural analysis of the development of human basophils and mast cells in vitro. Int J Clin Lab Res. 1995;25(1):7–24. https://doi.org/10.1007/BF02592571.

    Article  CAS  Google Scholar 

  24. Metcalfe DD, Baram D, Mekori YA. Mast cells. Physiol Rev. 1997;77(4):1033–79. https://doi.org/10.1152/physrev.1997.77.4.1033.

    Article  CAS  Google Scholar 

  25. Ribatti D. The staining of mast cells: a historical overview. Int Arch Allergy Immunol. 2018;176(1):55–60. https://doi.org/10.1159/000487538.

    Article  CAS  Google Scholar 

  26. Valent P, Akin C, Hartmann K, Nilsson G, Reiter A, Hermine O, Sotlar K, Sperr WR, Escribano L, George TI, Kluin-Nelemans HC, Ustun C, Triggiani M, Brockow K, Gotlib J, Orfao A, Kovanen PT, Hadzijusufovic E, Sadovnik I, Horny HP, Arock M, Schwartz LB, Austen KF, Metcalfe DD, Galli SJ. Mast cells as a unique hematopoietic lineage and cell system: from Paul Ehrlich’s visions to precision medicine concepts. Theranostics. 2020;10(23):10743–68. https://doi.org/10.7150/thno.46719.

    Article  CAS  Google Scholar 

  27. Schwartz LB, Irani AM, Roller K, Castells MC, Schechter NM. Quantitation of histamine, tryptase, and chymase in dispersed human T and TC mast cells. J Immunol. 1987;138(8):2611–5.

    CAS  Google Scholar 

  28. Le QT, Lyons JJ, Naranjo AN, Olivera A, Lazarus RA, Metcalfe DD, Milner JD, Schwartz LB. Impact of naturally forming human α/β-tryptase heterotetramers in the pathogenesis of hereditary α-tryptasemia. J Exp Med. 2019;216(10):2348–61. https://doi.org/10.1084/jem.20190701.

    Article  CAS  Google Scholar 

  29. Sprinzl B, Greiner G, Uyanik G, Arock M, Haferlach T, Sperr WR, Valent P, Hoermann G. Genetic regulation of tryptase production and clinical impact: hereditary alpha tryptasemia, mastocytosis and beyond. Int J Mol Sci. 2021;22(5):2458. https://doi.org/10.3390/ijms22052458.

    Article  CAS  Google Scholar 

  30. Krystel-Whittemore M, Dileepan KN, Wood JG. Mast cell: a multi-functional master cell. Front Immunol. 2016;6:620. https://doi.org/10.3389/fimmu.2015.00620.

    Article  CAS  Google Scholar 

  31. Caughey GH. Mast cell tryptases and chymases in inflammation and host defense. Immunol Rev. 2007;217:141–54. https://doi.org/10.1111/j.1600-065X.2007.00509.x.

    Article  CAS  Google Scholar 

  32. Silver RB, Reid AC, Mackins CJ, Askwith T, Schaefer U, Herzlinger D, Levi R. Mast cells: a unique source of renin. Proc Natl Acad Sci U S A. 2004;101(37):13607–12. https://doi.org/10.1073/pnas.0403208101.

    Article  CAS  Google Scholar 

  33. González-de-Olano D, Matito A, Orfao A, Escribano L. Advances in the understanding and clinical management of mastocytosis and clonal mast cell activation syndromes. F1000Res. 2016;5:2666. https://doi.org/10.12688/f1000research.9565.1.

  34. Grammer L, Greenberger P. Patterson’s allergic diseases, chapter 1. 8th ed. Chicago: Wolter Kluwer; 2018.

    Google Scholar 

  35. Alter SC, Kramps JA, Janoff A, Schwartz LB. Interactions of human mast cell tryptase with biological protease inhibitors. Arch Biochem Biophys. 1990;276:26–31.

    Article  CAS  Google Scholar 

  36. Schwartz LB, Metcalfe DD, Miller JS, Earl H, Sullivan T. Tryptase levels as an indicator of mast-cell activation in systemic anaphylaxis and mastocytosis. N Engl J Med. 1987;316:1622–6.

    Article  CAS  Google Scholar 

  37. Crivellato E, Travan L, Ribatti D. Mast cells and basophils: a potential link in promoting angiogenesis during allergic inflammation. Int Arch Allergy Immunol. 2010;151:89–97.

    Article  CAS  Google Scholar 

  38. Steiner M, Huber S, Harrer A, Himly M. The evolution of human basophil biology from neglect towards understanding of their immune functions. Biomed Res Int. 2016;2016:8232830. https://doi.org/10.1155/2016/8232830.

    Article  CAS  Google Scholar 

  39. Johansson SG, Bieber T, Dahl R, Friedmann PS, Lanier BQ, Lockey RF, Motala C, Ortega Martell JA, Platts-Mills TA, Ring J, Thien F, Van Cauwenberge P, Williams HC. Revised nomenclature for allergy for global use: report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J Allergy Clin Immunol. 2004;113(5):832–6. https://doi.org/10.1016/j.jaci.2003.12.591.

    Article  CAS  Google Scholar 

  40. •• Fowler J, Lieberman P. Pathophysiology of immunologic and nonimmunologic systemic reactions including anaphylaxis. Immunol Allergy Clin North Am. 2022;42(1):27–43. https://doi.org/10.1016/j.iac.2021.09.011. This manuscript is a very complete pathophysiology review.

  41. •• Gülen T, Akin C. Anaphylaxis and mast cell disorders. Immunol Allergy Clin North Am. 2022;42(1):45–63. https://doi.org/10.1016/j.iac.2021.09.007. This manuscript gives a very detailed overview of mast cell disorders and its relationship with anaphylaxis.

  42. Dullaers M, De Bruyne R, Ramadani F, Gould HJ, Gevaert P, Lambrecht BN. The who, where, and when of IgE in allergic airway disease. J Allergy Clin Immunol. 2012;129(3):635–45. https://doi.org/10.1016/j.jaci.2011.10.029.

    Article  CAS  Google Scholar 

  43. Minegishi Y. Hyper-IgE syndrome, 2021 update. Allergol Int. 2021;70(4):407–14. https://doi.org/10.1016/j.alit.2021.07.007.

    Article  CAS  Google Scholar 

  44. Dosanjh A. Pediatric anaphylaxis and hyper IgE syndrome. J Asthma Allergy. 2017;10:31–3. https://doi.org/10.2147/JAA.S129160.

    Article  CAS  Google Scholar 

  45. Yanagida N, Sato S, Takahashi K, Nagakura KI, Asaumi T, Ogura K, Ebisawa M. Increasing specific immunoglobulin E levels correlate with the risk of anaphylaxis during an oral food challenge. Pediatr Allergy Immunol. 2018;29(4):417–24. https://doi.org/10.1111/pai.12896.

    Article  Google Scholar 

  46. Pascal M, Moreno C, Dávila I, Tabar AI, Bartra J, Labrador M, Luengo O. Integration of in vitro allergy test results and ratio analysis for the diagnosis and treatment of allergic patients (INTEGRA). Clin Transl Allergy. 2021;11(7): e12052. https://doi.org/10.1002/clt2.12052.

    Article  Google Scholar 

  47. Rios EJ, Kalesnikoff J. FcεRI expression and dynamics on mast cells. Methods Mol Biol. 2015;1220:239–55. https://doi.org/10.1007/978-1-4939-1568-2_15.

    Article  CAS  Google Scholar 

  48. Maurer D, Fiebiger E, Reininger B, Wolff-Winiski B, Jouvin MH, Kilgus O, Kinet JP, Stingl G. Expression of functional high affinity immunoglobulin E receptors (Fc epsilon RI) on monocytes of atopic individuals. J Exp Med. 1994;179(2):745–50. https://doi.org/10.1084/jem.179.2.745.

    Article  CAS  Google Scholar 

  49. Kawakami T, Kitaura J. Mast cell survival and activation by IgE in the absence of antigen: a consideration of the biologic mechanisms and relevance. J Immunol. 2005;175(7):4167–73. https://doi.org/10.4049/jimmunol.175.7.4167.

    Article  CAS  Google Scholar 

  50. Galli SJ, Tsai M. IgE and mast cells in allergic disease. Nat Med. 2012;18(5):693–704. https://doi.org/10.1038/nm.2755.

    Article  CAS  Google Scholar 

  51. Finkelman FD, Rothenberg ME, Brandt EB, Morris SC, Strait RT. Molecular mechanisms of anaphylaxis: lessons from studies with murine models. J Allergy Clin Immunol. 2005;115(3):449–57. https://doi.org/10.1016/j.jaci.2004.12.1125.

    Article  CAS  Google Scholar 

  52. Muñoz-Cano R, Picado C, Valero A, Bartra J. Mechanisms of anaphylaxis beyond IgE. J Investig Allergol Clin Immunol. 2016;26(2):73–82. https://doi.org/10.18176/jiaci.0046.

    Article  CAS  Google Scholar 

  53. Rispens T, Derksen NI, Commins SP, Platts-Mills TA, Aalberse RC. IgE production to α-gal is accompanied by elevated levels of specific IgG1 antibodies and low amounts of IgE to blood group B. PLoS ONE. 2013;8(2): e55566. https://doi.org/10.1371/journal.pone.0055566.

    Article  CAS  Google Scholar 

  54. Klos A, Tenner AJ, Johswich KO, Ager RR, Reis ES, Köhl J. The role of the anaphylatoxins in health and disease. Mol Immunol. 2009;46(14):2753–66. https://doi.org/10.1016/j.molimm.2009.04.027.

    Article  CAS  Google Scholar 

  55. Fukuoka Y, Xia HZ, Sanchez-Muñoz LB, Dellinger AL, Escribano L, Schwartz LB. Generation of anaphylatoxins by human beta-tryptase from C3, C4, and C5. J Immunol. 2008;180(9):6307–16. https://doi.org/10.4049/jimmunol.180.9.6307.

    Article  CAS  Google Scholar 

  56. Kow ASF, Chik A, Soo KM, Khoo LW, Abas F, Tham CL. Identification of soluble mediators in IgG-mediated anaphylaxis via Fcγ receptor: a meta-analysis. Front Immunol. 2019;10:190. https://doi.org/10.3389/fimmu.2019.00190.

    Article  CAS  Google Scholar 

  57. Alvarez-Twose I, González de Olano D, Sánchez-Muñoz L, Matito A, Esteban-López MI, Vega A, et al. Clinical, biological, and molecular characteristics of clonal mast cell disorders presenting with systemic mast cell activation symptoms. J Allergy Clin Immunol. 2010;125(6):1269–1278.e2. https://doi.org/10.1016/j.jaci.2010.02.019.

  58. Schäfer B, Piliponsky AM, Oka T, Song CH, Gerard NP, Gerard C, et al. Mast cell anaphylatoxin receptor expression can enhance IgE-dependent skin inflammation in mice. J Allergy Clin Immunol. 2013;131(2):541–8.e1–9. https://doi.org/10.1016/j.jaci.2012.05.009.

  59. Martelli M, Monaldi C, De Santis S, Bruno S, Mancini M, Cavo M, Soverini S. Recent advances in the molecular biology of systemic mastocytosis: implications for diagnosis, prognosis, and therapy. Int J Mol Sci. 2020;21(11):3987. https://doi.org/10.3390/ijms21113987.

    Article  CAS  Google Scholar 

  60. Tsai M, Valent P, Galli SJ. KIT as a master regulator of the mast cell lineage. J Allergy Clin Immunol. 2022;149(6):1845–54. https://doi.org/10.1016/j.jaci.2022.04.012.

    Article  CAS  Google Scholar 

  61. Valent P, Akin C, Hartmann K, Alvarez-Twose I, Brockow K, Hermine O, et al. Updated diagnostic criteria and classification of mast cell disorders: a consensus proposal. Hemasphere. 2021;5(11): e646. https://doi.org/10.1097/HS9.0000000000000646.

    Article  CAS  Google Scholar 

  62. Gülen T, Hägglund H, Dahlén B, Nilsson G. High prevalence of anaphylaxis in patients with systemic mastocytosis - a single-centre experience. Clin Exp Allergy. 2014;44(1):121–9. https://doi.org/10.1111/cea.12225.

    Article  CAS  Google Scholar 

  63. González de Olano D, de la Hoz Caballer B, Núñez López R, Sánchez Muñoz L, Cuevas Agustín M, Diéguez MC, et al. Prevalence of allergy and anaphylactic symptoms in 210 adult and pediatric patients with mastocytosis in Spain: a study of the Spanish network on mastocytosis (REMA). Clin Exp Allergy. 2007;37(10):1547–55. https://doi.org/10.1111/j.1365-2222.2007.02804.x.

  64. Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka HM, et al. International consensus classification of myeloid neoplasms and acute leukemia: integrating morphological, clinical, and genomic data. Blood. 2022:blood.2022015850. https://doi.org/10.1182/blood.2022015850.

  65. González-de-Olano D, Esteban-López MI, Alonso-Díaz-de-Durana MD, González-Mancebo E, Prieto-García A, Gandolfo-Cano M, et al. Frequency of clonal mast cell diseases among patients presenting with anaphylaxis: a prospective study in 178 patients from 5 tertiary centers in Spain. J Allergy Clin Immunol Pract. 2019;7(8):2924-2926.e1. https://doi.org/10.1016/j.jaip.2019.05.027.

    Article  Google Scholar 

  66. Escribano L, Alvarez-Twose I, Garcia-Montero A, Sanchez-Muñoz L, Jara-Acevedo M, Orfao A. Indolent systemic mastocytosis without skin involvement vs. isolated bone marrow mastocytosis. Haematologica. 2011;96(4):e26; author reply e28. https://doi.org/10.3324/haematol.2011.040865.

  67. Valent P, Akin C, Bonadonna P, Hartmann K, Brockow K, Niedoszytko M, et al. Proposed diagnostic algorithm for patients with suspected mast cell activation syndrome. J Allergy Clin Immunol Pract. 2019;7(4):1125-1133.e1. https://doi.org/10.1016/j.jaip.2019.01.006.

    Article  Google Scholar 

  68. Schwartz LB. Diagnostic value of tryptase in anaphylaxis and mastocytosis. Immunol Allergy Clin North Am. 2006;26(3):451–63. https://doi.org/10.1016/j.iac.2006.05.010.

    Article  Google Scholar 

  69. Crivellato E, Nico B, Vacca A, Ribatti D. Ultrastructural analysis of mast cell recovery after secretion by piecemeal degranulation in B-cell non-Hodgkin’s lymphoma. Leuk Lymphoma. 2003;44:517–21.

    Article  CAS  Google Scholar 

  70. Dvorak AM, Schleimer RP, Lichtenstein LM. Human mast cells synthesize new granules during recovery from degranulation. In vitro studies with mast cells purified from human lungs. Blood. 1988;71:76–85.

  71. Fukuoka Y, Schwartz LB. The B12 anti-tryptase monoclonal antibody disrupts the tetrameric structure of heparin-stabilized beta-tryptase to form monomers that are inactive at neutral pH and active at acidic pH. J Immunol. 2006;176(5):3165–72. https://doi.org/10.4049/jimmunol.176.5.3165.

    Article  CAS  Google Scholar 

  72. •• Lyons JJ, Sun G, Stone KD, Nelson C, Wisch L, O’Brien M, et al. Mendelian inheritance of elevated serum tryptase associated with atopy and connective tissue abnormalities. J Allergy Clin Immunol. 2014;133(5):1471–4.https://doi.org/10.1016/j.jaci.2013.11.039. This manuscript describe the Mendelian inheritance associated to hypertriptasemia.

  73. Luskin KT, White AA, Lyons JJ. The genetic basis and clinical impact of hereditary alpha-tryptasemia. J Allergy Clin Immunol Pract. American Academy of Allergy, Asthma and Immunology; 2021;9:2235–42.

  74. Lyons JJ. Hereditary alpha tryptasemia: genotyping and associated clinical features. Immunol Allergy Clin North Am. W.B. Saunders; 2018;38:483–95.

  75. Lyons JJ, Yu X, Hughes JD, Le QT, Jamil A, Bai Y, Ho N, Zhao M, Liu Y, O’Connell MP, Trivedi NN, Nelson C, DiMaggio T, Jones N, Matthews H, Lewis KL, Oler AJ, Carlson RJ, Arkwright PD, Hong C, Agama S, Wilson TM, Tucker S, Zhang Y, McElwee JJ, Pao M, Glover SC, Rothenberg ME, Hohman RJ, Stone KD, Caughey GH, Heller T, Metcalfe DD, Biesecker LG, Schwartz LB, Milner JD. Elevated basal serum tryptase identifies a multisystem disorder associated with increased TPSAB1 copy number. Nat Genet. 2016;48(12):1564–9. https://doi.org/10.1038/ng.3696.

    Article  CAS  Google Scholar 

  76. Hernández-Hernández L, Sanz C, Marcos-Vadillo E, García-Sánchez A, Moreno E, Lorente F, González-de-Olano D, Dávila I, Isidoro-García M. Increased TPSAB1 copy number in a family with elevated basal serum levels of tryptase. Front Med (Lausanne). 2021;8: 577081. https://doi.org/10.3389/fmed.2021.577081.

    Article  Google Scholar 

  77. Hermann K, Ring J. The renin angiotensin system and hymenoptera venom anaphylaxis. Clin Exp Allergy. 1993;23(9):762–9. https://doi.org/10.1111/j.1365-2222.1993.tb00364.x.

    Article  CAS  Google Scholar 

  78. Varney VA, Nicholas A, Warner A, Sumar N. IgE-mediated systemic anaphylaxis and its association with gene polymorphisms of ACE, angiotensinogen and chymase. J Asthma Allergy. 2019;12:343–61. https://doi.org/10.2147/JAA.S213016.

    Article  CAS  Google Scholar 

  79. Zheng R, Blobel GA. GATA transcription factors and cancer. Genes Cancer. 2010;1(12):1178–88. https://doi.org/10.1177/1947601911404223.

    Article  CAS  Google Scholar 

  80. Desai A, Sowerwine K, Liu Y, Lawrence MG, Chovanec J, Hsu AP, O’Connell MP, Kim J, Boris L, Jones N, Wisch L, Eisch RR, Carter MC, Komarow HD, Zerbe C, Milner JD, Maric I, Sun X, Lee CR, Tunc I, Pirooznia M, Stone KD, Holland SM, Metcalfe DD, Lyons JJ. GATA-2-deficient mast cells limit IgE-mediated immediate hypersensitivity reactions in human subjects. J Allergy Clin Immunol. 2019;144(2):613-617.e14. https://doi.org/10.1016/j.jaci.2019.05.007.

    Article  CAS  Google Scholar 

  81. •• Guo Y, Proaño-Pérez E, Muñoz-Cano R, Martin M. Anaphylaxis: focus on transcription factor activity. Int J Mol Sci. 2021;22(9):4935. https://doi.org/10.3390/ijms22094935. This review highlights the paper of transcription factors in the anaphylaxis pathophysiology.

  82. Ihle JN. The Stat family in cytokine signaling. Curr Opin Cell Biol. 2001;13(2):211–7. https://doi.org/10.1016/s0955-0674(00)00199-x.

    Article  CAS  Google Scholar 

  83. Siegel AM, Stone KD, Cruse G, Lawrence MG, Olivera A, Jung MY, et al. Diminished allergic disease in patients with STAT3 mutations reveals a role for STAT3 signaling in mast cell degranulation. J Allergy Clin Immunol. 2013;132(6):1388–96. https://doi.org/10.1016/j.jaci.2013.08.045.

    Article  CAS  Google Scholar 

  84. Ribó P, Guo Y, Aranda J, Ainsua-Enrich E, Navinés-Ferrer A, Guerrero M, Pascal M, de la Cruz C, Orozco M, Muñoz-Cano R, Martin M. Mutation in KARS: A novel mechanism for severe anaphylaxis. J Allergy Clin Immunol. 2021;147(5):1855-1864.e9. https://doi.org/10.1016/j.jaci.2020.12.637.

    Article  CAS  Google Scholar 

  85. Perera RM, Di Malta C, Ballabio A. MiT/TFE family of transcription factors, lysosomes, and cancer. Annu Rev Cancer Biol. 2019;3:203–22. https://doi.org/10.1146/annurev-cancerbio-030518-055835.

    Article  Google Scholar 

  86. Carmi-Levy I, Yannay-Cohen N, Kay G, Razin E, Nechushtan H. Diadenosine tetraphosphate hydrolase is part of the transcriptional regulation network in immunologically activated mast cells. Mol Cell Biol. 2008;28(18):5777–84. https://doi.org/10.1128/MCB.00106-08.

    Article  CAS  Google Scholar 

  87. Li Y, Liu B, Harmacek L, Long Z, Liang J, Lukin K, et al. The transcription factors GATA2 and microphthalmia-associated transcription factor regulate Hdc gene expression in mast cells and are required for IgE/mast cell-mediated anaphylaxis. J Allergy Clin Immunol. 2018;142:1173–84.

    Article  CAS  Google Scholar 

  88. Nechushtan H, Kim S, Kay G, Razin E. Chapter 1: the physiological role of lysyl tRNA synthetase in the immune system. Adv Immunol. 2009;103:1–27. https://doi.org/10.1016/S0065-2776(09)03001-6.

  89. McMillan HJ, Humphreys P, Smith A, Schwartzentruber J, Chakraborty P, Bulman DE, et al. Congenital visual impairment and progressive microcephaly due to lysyl-transfer ribonucleic acid (RNA) synthetase (KARS) mutations: the expanding phenotype of aminoacyl-transfer RNA synthetase mutations in human disease. J Child Neurol. 2015;30(8):1037–43. https://doi.org/10.1177/0883073814553272.

  90. Wang Z, Franke K, Bal G, Li Z, Zuberbier T, Babina M. MRGPRX2-mediated degranulation of human skin mast cells requires the operation of Gαi, Gαq, Ca++ channels, ERK1/2 and PI3K-interconnection between early and late signaling. Cells. 2022;11(6):953. https://doi.org/10.3390/cells11060953.

    Article  CAS  Google Scholar 

  91. McNeil BD. Minireview: Mas-related G protein-coupled receptor X2 activation by therapeutic drugs. Neurosci Lett. 2021;751: 135746. https://doi.org/10.1016/j.neulet.2021.135746.

    Article  CAS  Google Scholar 

  92. Elst J, Maurer M, Sabato V, Faber MA, Bridts CH, Mertens C, Van Houdt M, Van Gasse AL, van der Poorten MM, De Puysseleyr LP, Hagendorens MM, Van Tendeloo VF, Lion E, Campillo-Davo D, Ebo DG. Novel insights on MRGPRX2-mediated hypersensitivity to neuromuscular blocking agents and fluoroquinolones. Front Immunol. 2021;12: 668962. https://doi.org/10.3389/fimmu.2021.668962.

    Article  CAS  Google Scholar 

  93. Babina M, Wang Z, Roy S, Guhl S, Franke K, Artuc M, Ali H, Zuberbier T. MRGPRX2 is the codeine receptor of human skin mast cells: desensitization through β-arrestin and lack of correlation with the FcεRI pathway. J Invest Dermatol. 2021;141(5):1286-1296.e4. https://doi.org/10.1016/j.jid.2020.09.017.

    Article  CAS  Google Scholar 

  94. Vadas P, Gold M, Perelman B, Liss GM, Lack G, Blyth T, Simons FE, Simons KJ, Cass D, Yeung J. Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis. N Engl J Med. 2008;358(1):28–35. https://doi.org/10.1056/NEJMoa070030.

    Article  CAS  Google Scholar 

  95. Upton JEM, Hoang JA, Leon-Ponte M, Finkelstein Y, Du YJ, Adeli K, Eiwegger T, Grunebaum E, Vadas P. Platelet-activating factor acetylhydrolase is a biomarker of severe anaphylaxis in children. Allergy. 2022. https://doi.org/10.1111/all.15308.

    Article  Google Scholar 

  96. Lyons JJ, Chovanec J, O’Connell MP, Liu Y, Šelb J, Zanotti R, Bai Y, Kim J, Le QT, DiMaggio T, Schwartz LB, Komarow HD, Rijavec M, Carter MC, Milner JD, Bonadonna P, Metcalfe DD, Korošec P. Heritable risk for severe anaphylaxis associated with increased α-tryptase-encoding germline copy number at TPSAB1. J Allergy Clin Immunol. 2021;147(2):622–32. https://doi.org/10.1016/j.jaci.2020.06.035.

    Article  CAS  Google Scholar 

Download references

Funding

The present work has been funded by SEAIC Foundation 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura V. Carpio-Escalona MD.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Anaphylaxis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carpio-Escalona, L.V., González-de-Olano, D. Immunological and Non-Immunological Risk Factors in Anaphylaxis. Curr Treat Options Allergy 9, 335–352 (2022). https://doi.org/10.1007/s40521-022-00319-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40521-022-00319-0

Keywords

Navigation