Skip to main content
Log in

The Use of Molecular Allergy Diagnosis in Anaphylaxis: a Literature Review

  • Anaphylaxis (M Sanchez-Borges, Section Editor)
  • Published:
Current Treatment Options in Allergy Aims and scope Submit manuscript

Abstract

Purpose of the review

Anaphylaxis can be caused mainly by drugs, foods, and hymenoptera or it can be idiopathic, when no cause is identified. The identification of the cause(s) of an anaphylactic reaction can be made by using both top-down (i.e., from patients’ history to MAD) and bottom-up (from MAD screening to the patients’ characterization) strategies.

Recent findings

Independently from the strategy, the patients’ history, skin prick test, second, third, and fourth level in vitro serum or cellular assays, and in vivo challenge tests are mandatory. The diagnosis is based on the results of these tests used at best. Third level specific IgE assays, based on the use of molecular allergens, allow a very accurate description of the specific IgE profile of the patient, resulting in a significant support in the identification of the trigger of the anaphylactic reaction.

Summary

In recent years, this third level has been empowered by the availability of allergen arrays that allow screening a large number of molecular allergens in a single test. In this paper, we analyze the recent scientific literature on this topic, showing that molecular allergy diagnosis does not seem to be yet a standard procedure in the identification of the cause of anaphylaxis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Simons FE, Ardusso LR, Bilo MB, El-Gamal YM, Ledford DK, Ring J, et al. World allergy organization guidelines for the assessment and management of anaphylaxis. World Allergy Organ J. 2011;4(2):13–37.

    Article  Google Scholar 

  2. Muraro A, Werfel T, Hoffmann-Sommergruber K, Roberts G, Beyer K, Bindslev-Jensen C, et al. EAACI food allergy and anaphylaxis guidelines: diagnosis and management of food allergy. Allergy. 2014;69(8):1008–25.

    Article  CAS  Google Scholar 

  3. Schwartz LB, Metcalfe DD, Miller JS, Earl H, Sullivan T. Tryptase levels as an indicator of mast-cell activation in systemic anaphylaxis and mastocytosis. N Engl J Med. 1987;316(26):1622–6.

    Article  CAS  Google Scholar 

  4. Sala-Cunill A, Cardona V, Labrador-Horrillo M, Luengo O, Esteso O, Garriga T, et al. Usefulness and limitations of sequential serum tryptase for the diagnosis of anaphylaxis in 102 patients. Int Arch Allergy Immunol. 2013;160(2):192–9.

    Article  Google Scholar 

  5. Cardona V, Ansotegui IJ. Component-resolved diagnosis in anaphylaxis. Curr Opin Allergy Clin Immunol. 2016;16(3):244–9 This is the first article where the role of molecular allergy diagnostics has been described.

    Article  Google Scholar 

  6. • Canonica GW, Ansotegui IJ, Pawankar R, Schmid-Grendelmeier P, van Hage M, Baena-Cagnani CE, et al. A WAO - ARIA - GA(2)LEN consensus document on molecular-based allergy diagnostics. World Allergy Organ J. 2013;6(1):17 In this consensus article, the role of Molecular Allergy Diagnostics has been formalized in clinics.

    Article  Google Scholar 

  7. Worm M, Sturm G, Kleine-Tebbe J, Cichocka-Jarosz E, Cardona V, Maris I, et al. New trends in anaphylaxis. Allergo J Int. 2017;26(8):295–300.

    Article  Google Scholar 

  8. Mari A, Scala E, Palazzo P, Ridolfi S, Zennaro D, Carabella G. Bioinformatics applied to allergy: allergen databases, from collecting sequence information to data integration. The Allergome platform as a model. Cell Immunol. 2006;244(2):97–100.

    Article  CAS  Google Scholar 

  9. Riccio AM, De Ferrari L, Chiappori A, Ledda S, Passalacqua G, Melioli G, et al. Molecular diagnosis and precision medicine in allergy management. Clin Chem Lab Med. 2016;54(11):1705–14.

    Article  CAS  Google Scholar 

  10. •• Matricardi, PM K-TJ, Hoffmann HJ, Valenta R, Hilger C, Hofmaier S, et al. EAACI molecular allergology user’s guide. Pediatr Allergy Immunol. 2016;27(Suppl 23):1–250 This is a fundamental article describing the rules of molecular allergy, useful for experts and beginners.

    Article  Google Scholar 

  11. •• Kowalski, ML AI, Aberer W, Al-Ahmad M, Akdis M, Ballmer-Weber BK, et al. Risk and safety requirements for diagnostic and therapeutic procedures in allergology: world allergy organization statement. World Allergy Organ J. 2016;9(1):33 This article represents the classic top-down approach of allergy diagnostics.

    Article  Google Scholar 

  12. Harwanegg C, Laffer S, Hiller R, Mueller MW, Kraft D, Spitzauer S, et al. Microarrayed recombinant allergens for diagnosis of allergy. Clin Exp Allergy. 2003;33(1):7–13.

    Article  CAS  Google Scholar 

  13. Incorvaia C, Mauro M, Ridolo E, Makri E, Montagni M, Ciprandi G. A pitfall to avoid when using an allergen microarray: the incidental detection of IgE to unexpected allergens. J Allergy Clin Immunol Pract. 2015;3(6):879–82.

    Article  Google Scholar 

  14. Melioli G, Bonifazi F, Bonini S, Maggi E, Mussap M, Passalacqua G, et al. The ImmunoCAP ISAC molecular allergology approach in adult multi-sensitized Italian patients with respiratory symptoms. Clin Biochem. 2011;44(12):1005–11.

    Article  Google Scholar 

  15. Heffler E, Puggioni F, Peveri S, Montagni M, Canonica GW, Melioli G. Extended IgE profile based on an allergen macroarray: a novel tool for precision medicine in allergy diagnosis. World Allergy Organ J. 2018;11(1):7.

    Article  Google Scholar 

  16. Ebo DG, Faber M, Elst J, Van Gasse AL, Bridts CH, Mertens C, et al. In vitro diagnosis of immediate drug hypersensitivity during anesthesia: a review of the literature. J Allergy Clin Immunol Pract. 2018;6(4):1176–84.

    Article  Google Scholar 

  17. Antolin-Amerigo D, Ruiz-Leon B, Boni E, Alfaya-Arias T, Alvarez-Mon M, Barbarroja-Escudero J, et al. Component-resolved diagnosis in hymenoptera allergy. Allergol Immunopathol (Madr). 2018;46(3):253–62.

    Article  CAS  Google Scholar 

  18. Michel J, Brockow K, Darsow U, Ring J, Schmidt-Weber CB, Grunwald T, et al. Added sensitivity of component-resolved diagnosis in hymenoptera venom-allergic patients with elevated serum tryptase and/or mastocytosis. Allergy. 2016;71(5):651–60.

    Article  CAS  Google Scholar 

  19. • Tomsitz D, Brockow K. Component resolved diagnosis in Hymenoptera anaphylaxis. Curr Allergy Asthma Rep. 2017;17(6):38 In this article, the role of allergen molecules for the diagnostics of Hymenoptera sensitization has been defined.

    Article  CAS  Google Scholar 

  20. Baumann K, Dashevsky D, Sunagar K, Fry B. Scratching the surface of an itch: molecular evolution of Aculeata venom allergens. J Mol Evol. 2018;86(7):484–500.

    Article  CAS  Google Scholar 

  21. Blank S, Etzold S, Darsow U, Schiener M, Eberlein B, Russkamp D, et al. Component-resolved evaluation of the content of major allergens in therapeutic extracts for specific immunotherapy of honeybee venom allergy. Hum Vaccin Immunother. 2017;13(10):2482–9.

    Article  Google Scholar 

  22. Elieh Ali Komi D, Shafaghat F, Zwiener RD. Immunology of bee venom. Clin Rev Allergy Immunol. 2018;54(3):386–96.

    Article  CAS  Google Scholar 

  23. Frick M, Fischer J, Helbling A, Rueff F, Wieczorek D, Ollert M, et al. Predominant Api m 10 sensitization as risk factor for treatment failure in honey bee venom immunotherapy. J Allergy Clin Immunol. 2016;138(6):1663–71 e9.

    Article  CAS  Google Scholar 

  24. Ruiz B, Serrano P, Moreno C. IgE-Api m 4 is useful for identifying a particular phenotype of bee venom allergy. J Investig Allergol Clin Immunol. 2016;26(6):355–61.

    Article  CAS  Google Scholar 

  25. Jeong KY, Yi MH, Son M, Lyu D, Lee JH, Yong TS, et al. IgE reactivity of recombinant Pac c 3 from the Asian needle ant (Pachycondyla chinensis). Int Arch Allergy Immunol. 2016;169(2):93–100.

    Article  CAS  Google Scholar 

  26. Srisong H, Sukprasert S, Klaynongsruang S, Daduang J, Daduang S. Identification, expression and characterization of the recombinant Sol g 4.1 protein from the venom of the tropical fire ant Solenopsis geminata. J Venom Anim Toxins Incl Trop Dis. 2018;24:23.

    Article  Google Scholar 

  27. Srisong H, Daduang S, Lopata AL. Current advances in ant venom proteins causing hypersensitivity reactions in the Asia-Pacific region. Mol Immunol. 2016;69:24–32.

    Article  CAS  Google Scholar 

  28. Wanandy T, Wilson R, Gell D, Rose HE, Gueven N, Davies NW, et al. Towards complete identification of allergens in Jack Jumper (Myrmecia pilosula) ant venom and their clinical relevance: an immunoproteomic approach. Clin Exp Allergy. 2018;48(9):1222–34.

    Article  CAS  Google Scholar 

  29. Pouessel G, Turner PJ, Worm M, Cardona V, Deschildre A, Beaudouin E, et al. Food-induced fatal anaphylaxis: from epidemiological data to general prevention strategies. Clin Exp Allergy. 2018;48:1584–93.

    Article  Google Scholar 

  30. da Silva DM, Vieira TM, Pereira AM, de Sousa Moreira AM, Delgado JL. Cross-reactive LTP sensitization in food-dependent exercise-induced urticaria/anaphylaxis: a pilot study of a component-resolved and in vitro depletion approach. Clin Transl Allergy. 2016;6:46.

    Article  Google Scholar 

  31. Garcia-Blanca A, Aranda A, Blanca-Lopez N, Perez D, Gomez F, Mayorga C, et al. Influence of age on IgE response in peanut-allergic children and adolescents from the Mediterranean area. Pediatr Allergy Immunol. 2015;26(6):497–502.

    Article  CAS  Google Scholar 

  32. Giovannini M, Comberiati P, Piazza M, Chiesa E, Piacentini GL, Boner A, et al. Retrospective definition of reaction risk in Italian children with peanut, hazelnut and walnut allergy through component-resolved diagnosis. Allergol Immunopathol (Madr). 2018.

  33. Mota I, Gaspar A, Benito-Garcia F, Correia M, Arede C, Piedade S, et al. Anaphylaxis caused by lipid transfer proteins: an unpredictable clinical syndrome. Allergol Immunopathol (Madr). 2018;46(6):565–70.

    Article  Google Scholar 

  34. Munoz-Garcia E, Luengo-Sanchez O, Moreno-Perez N, Cuesta-Herranz J, Pastor-Vargas C, Cardona V. Lettuce allergy is a lipid transfer syndrome-related food allergy with a high risk of severe reactions. J Investig Allergol Clin Immunol. 2017;27(2):98–103.

    Article  CAS  Google Scholar 

  35. Pascal M, Munoz-Cano R, Mila J, Sanz ML, Diaz-Perales A, Sanchez-Lopez J, et al. Nonsteroidal anti-inflammatory drugs enhance IgE-mediated activation of human basophils in patients with food anaphylaxis dependent on and independent of nonsteroidal anti-inflammatory drugs. Clin Exp Allergy. 2016;46(8):1111–9.

    Article  CAS  Google Scholar 

  36. Uasuf CG, Sano CD, Gangemi S, Albeggiani G, Cigna D, Dino P, et al. IL-33/s-ST2 ratio, systemic symptoms, and basophil activation in Pru p 3-sensitized allergic patients. Inflamm Res. 2018;67(8):671–9.

    Article  CAS  Google Scholar 

  37. Ukleja-Sokolowska N, Zacniewski R, Gawronska-Ukleja E, Zbikowska-Gotz M, Lis K, Sokolowski L, et al. Food-dependent, exercise-induced anaphylaxis in a patient allergic to peach. Int J Immunopathol Pharmacol. 2018;32:2058738418803154.

    Article  Google Scholar 

  38. • Commins SP. Invited commentary: alpha-gal allergy: tip of the iceberg to a pivotal immune response. Curr Allergy Asthma Rep. 2016;16(9):61 In this article, the possibility that antibodies to alpha-gal have a role in diseases other than read-meat allergy is suggested.

    Article  Google Scholar 

  39. Beck SC, Huissoon AP, Collins D, Richter AG, Krishna MT. The concordance between component tests and clinical history in British adults with suspected pollen-food syndrome to peanut and hazelnut. J Clin Pathol. 2018;71(3):239–45.

    Article  CAS  Google Scholar 

  40. Buyuktiryaki B, Cavkaytar O, Sahiner UM, Yilmaz EA, Yavuz ST, Soyer O, et al. Cor a 14, hazelnut-specific IgE, and SPT as a reliable tool in hazelnut allergy diagnosis in eastern Mediterranean children. J Allergy Clin Immunol Pract. 2016;4(2):265–72 e3.

    Article  Google Scholar 

  41. Eller E, Mortz CG, Bindslev-Jensen C. Cor a 14 is the superior serological marker for hazelnut allergy in children, independent of concomitant peanut allergy. Allergy. 2016;71(4):556–62.

    Article  CAS  Google Scholar 

  42. Vetander M, Protudjer JL, Lilja G, Kull I, Hedlin G, van Hage M, et al. Anaphylaxis to foods in a population of adolescents: incidence, characteristics and associated risks. Clin Exp Allergy. 2016;46(12):1575–87.

    Article  CAS  Google Scholar 

  43. Angelina A, Sirvent S, Palladino C, Vereda A, Cuesta-Herranz J, Eiwegger T, et al. The lipid interaction capacity of Sin a 2 and Ara h 1, major mustard and peanut allergens of the cupin superfamily, endorses allergenicity. Allergy. 2016;71(9):1284–94.

    Article  CAS  Google Scholar 

  44. Iqbal A, Shah F, Hamayun M, Ahmad A, Hussain A, Waqas M, et al. Allergens of Arachis hypogaea and the effect of processing on their detection by ELISA. Food Nutr Res. 2016;60:28945.

    Article  Google Scholar 

  45. Koppelman SJ, Jayasena S, Luykx D, Schepens E, Apostolovic D, de Jong GA, et al. Allergenicity attributes of different peanut market types. Food Chem Toxicol. 2016;91:82–90.

    Article  CAS  Google Scholar 

  46. Kukkonen AK, Pelkonen AS, Makinen-Kiljunen S, Voutilainen H, Makela MJ. Ara h 2 and Ara 6 are the best predictors of severe peanut allergy: a double-blind placebo-controlled study. Allergy. 2015;70(10):1239–45.

    Article  CAS  Google Scholar 

  47. Park KH, Son YW, Lee SC, Jeong K, Sim d W, Park HJ, et al. Clinical significance of component allergens in fagales pollen-sensitized peanut allergy in Korea. Allergy Asthma Immunol Res. 2016;8(6):505–11.

    Article  CAS  Google Scholar 

  48. Richard C, Jacquenet S, Sergeant P, Moneret-Vautrin DA. Cross-reactivity of a new food ingredient, dun pea, with legumes, and risk of anaphylaxis in legume allergic children. Eur Ann Allergy Clin Immunol. 2015;47(4):118–25.

    CAS  PubMed  Google Scholar 

  49. • van Veen LN, Heron M, Batstra M, van Haard PMM, de Groot H. The diagnostic value of component-resolved diagnostics in peanut allergy in children attending a Regional Paediatric Allergology clinic. BMC Pediatr. 2016;16:74 this is one of the articles where the role of Molecular Allergy Diagnostics in peanut allergy is not confirmed.

    Article  Google Scholar 

  50. Datema MR, Eller E, Zwinderman AH, Poulsen LK, S AV, van Ree R, et al. Ratios of specific IgG4 over IgE antibodies do not improve prediction of peanut allergy nor of its severity compared to specific IgE alone. Clin Exp Allergy. 2018.

  51. Martinet J, Couderc L, Renosi F, Bobee V, Marguet C, Boyer O. Diagnostic value of antigen-specific immunoglobulin E immunoassays against Ara h 2 and Ara h 8 peanut components in child food allergy. Int Arch Allergy Immunol. 2016;169(4):216–22.

    Article  CAS  Google Scholar 

  52. Platts-Mills TAE, Schuyler AJ, Erwin EA, Commins SP, Woodfolk JA. IgE in the diagnosis and treatment of allergic disease. J Allergy Clin Immunol. 2016;137(6):1662–70.

    Article  CAS  Google Scholar 

  53. JanssenDuijghuijsen LM, van Norren K, Grefte S, Koppelman SJ, Lenaerts K, Keijer J, et al. Endurance exercise increases intestinal uptake of the peanut allergen Ara h 6 after peanut consumption in humans. Nutrients. 2017;9(1).

  54. Mendes C, Costa J, Vicente AA, Oliveira MB, Mafra I. Cashew nut allergy: clinical relevance and allergen characterisation. Clin Rev Allergy Immunol. 2016.

  55. de Silva R, Dasanayake W, Wickramasinhe GD, Karunatilake C, Weerasinghe N, Gunasekera P, et al. Sensitization to bovine serum albumin as a possible cause of allergic reactions to vaccines. Vaccine. 2017;35(11):1494–500.

    Article  Google Scholar 

  56. Hochwallner H, Schulmeister U, Swoboda I, Focke-Tejkl M, Reininger R, Civaj V, et al. Infant milk formulas differ regarding their allergenic activity and induction of T-cell and cytokine responses. Allergy. 2017;72(3):416–24.

    Article  CAS  Google Scholar 

  57. Leonard SA, Nowak-Wegrzyn AH. Baked milk and egg diets for milk and egg allergy management. Immunol Allergy Clin N Am. 2016;36(1):147–59.

    Article  Google Scholar 

  58. Lomidze N, Gotua M. Patterns of sensitization by food and inhalant components in Georgian patients. Georgian Med News. 2016;(259):23–6.

  59. Martorell-Aragones A, Echeverria-Zudaire L, Alonso-Lebrero E, Bone-Calvo J, Martin-Munoz MF, Nevot-Falco S, et al. Position document: IgE-mediated cow’s milk allergy. Allergol Immunopathol (Madr). 2015;43(5):507–26.

    Article  CAS  Google Scholar 

  60. Shokouhi Shoormasti R, Fazlollahi MR, Barzegar S, Teymourpour P, Yazdanyar Z, Lebaschi Z, et al. The most common cow’s milk allergenic proteins with respect to allergic symptoms in Iranian patients. Iran J Allergy Asthma Immunol. 2016;15(2):161–5.

    PubMed  Google Scholar 

  61. Dhanapala P, De Silva C, Doran T, Suphioglu C. Cracking the egg: an insight into egg hypersensitivity. Mol Immunol. 2015;66(2):375–83.

    Article  CAS  Google Scholar 

  62. Petrosino MI, Scaparrotta A, Marcovecchio ML, Panichi D, Rapino D, Attanasi M, et al. Usefulness of molecular diagnosis in egg allergic children. Arch Med Sci. 2018;14(1):132–7.

    Article  CAS  Google Scholar 

  63. Gradman J, Mortz CG, Eller E, Bindslev-Jensen C. Relationship between specific IgE to egg components and natural history of egg allergy in Danish children. Pediatr Allergy Immunol. 2016;27(8):825–30.

    Article  Google Scholar 

  64. Ohtani K, Sato S, Syukuya A, Asaumi T, Ogura K, Koike Y, et al. Natural history of immediate-type hen’s egg allergy in Japanese children. Allergol Int. 2016;65(2):153–7.

    Article  CAS  Google Scholar 

  65. Ito K. Grain and legume allergy. Chem Immunol Allergy. 2015;101:145–51.

    Article  CAS  Google Scholar 

  66. Geiselhart S, Nagl C, Dubiela P, Pedersen AC, Bublin M, Radauer C, et al. Concomitant sensitization to legumin, Fag e 2 and Fag e 5 predicts buckwheat allergy. Clin Exp Allergy. 2018;48(2):217–24.

    Article  CAS  Google Scholar 

  67. Giannetti MP. Exercise-induced anaphylaxis: literature review and recent updates. Curr Allergy Asthma Rep. 2018;18(12):72 This is a useful review of the Exercize-Induced Anaphylaxis.

  68. Chen H, Huang N, Li WJ, Dong X, Qi SS, Wang YN, et al. Clinical and laboratory features, and quality of life assessment in wheat dependent exercise-induced anaphylaxis patients from Central China. J Huazhong Univ Sci Technolog Med Sci. 2016;36(3):410–5.

    Article  CAS  Google Scholar 

  69. Heaps A, Carter S, Selwood C, Moody M, Unsworth J, Deacock S, et al. The utility of the ISAC allergen array in the investigation of idiopathic anaphylaxis. Clin Exp Immunol. 2014;177(2):483–90.

    Article  CAS  Google Scholar 

  70. Nwaru BI, Dhami S, Sheikh A. Idiopathic anaphylaxis. Curr Treat Options Allergy. 2017;4(3):312–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Melioli MD.

Ethics declarations

Conflict of Interest

Enrico Heffler declares that he has no conflict of interest. Victoria Cardona declares that she has no conflict of interest. Olga Luengo declares that she has no conflict of interest. Giovanni Paoletti declares that he has no conflict of interest. Francesca Racca declares that she has no conflict of interest. Francesca Puggioni declares that she has no conflict of interest. Giovanni Melioli declares that he has no conflict of interest. Giorgio Walter Canonica declares that he has no conflict of interest.

Human and Animal rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

•Molecular allergy diagnosis (MAD) seems to be, at present, the most powerful laboratory method to identify allergen sensitization at single component level.

•Despite MAD was introduced more than 10 years ago in allergy practice, its use in patients with anaphylaxis seems to be at present restricted to research more than to clinics.

•However, in many situations, such as in suspected hymenoptera, food or idiopathic anaphylaxis, MAD is probably the only suitable approach.

This article is part of the Topical Collection on Anaphylaxis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heffler, E., Cardona, V., Luengo, O. et al. The Use of Molecular Allergy Diagnosis in Anaphylaxis: a Literature Review. Curr Treat Options Allergy 6, 142–155 (2019). https://doi.org/10.1007/s40521-019-00204-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40521-019-00204-3

Keywords

Navigation