Skip to main content

Advertisement

Log in

Diagnostic Stewardship Approaches to Clostridioides difficile Infection in the Era of Two-Step Testing: a Shifting Landscape

  • Microbial Stewardship (M Stevens, Section Editor)
  • Published:
Current Treatment Options in Infectious Diseases Aims and scope Submit manuscript

Abstract

Purpose of review

To discuss the current strategies and impact of diagnostic stewardship for Clostridioides difficile infection.

Recent findings

The diagnosis of C. difficile infection is challenging due to complex epidemiology and the limitations of a single assay that is adequate for diagnosis. Overdiagnosis with sensitive molecular assays is common due to the prevalence of colonization with C. difficile. To overcome these challenges, multiple diagnostic stewardship strategies have been successfully deployed to optimize C. difficile testing.

Summary

Diagnostic stewardship strategies should be implemented at every stage of C. difficile testing in order to limit testing to patients with a high pre-test probability, minimize the limitations of stand-alone assays, and guide clinicians to appropriate management through clear result reporting and interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bartlett JG, Chang TW, Gurwith M, Gorbach SL, Onderdonk AB. Antibiotic-associated pseudomembranous colitis due to toxin-producing clostridia. N Engl J Med. 1978;298(10):531–4. https://doi.org/10.1056/NEJM197803092981003.

    Article  CAS  PubMed  Google Scholar 

  2. Gerding D, Young V. Clostridium difficile. In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Elsevier Saunders; 2016.

    Google Scholar 

  3. Larson HE, Price AB. Pseudomembranous colitis: presence of clostridial toxin. Lancet. 1977;310(8052):1312–4. https://doi.org/10.1016/s0140-6736(77)90363-4.

    Article  Google Scholar 

  4. CDC. Antibiotic resistance threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2019. https://doi.org/10.15620/cdc:82532.

    Book  Google Scholar 

  5. •• Crobach MJT, Planche T, Eckert C, Barbut F, Terveer EM, Dekkers OM, et al. European society of clinical microbiology and infectious diseases: update of the diagnostic guidance document for Clostridium difficile infection. Clin Microbiol Infect. 2016;22:S63–81. https://doi.org/10.1016/j.cmi.2016.03.010Current ESCMID guidelines for diagnosis of CDI.

    Article  PubMed  Google Scholar 

  6. Crobach MJT, Vernon JJ, Loo VG, Kong LY, Péchiné S, Wilcox MH, et al. Understanding Clostridium difficile colonization. Clin Microbiol Rev. 2018;31(2):1–29. https://doi.org/10.1128/CMR.00021-17.

    Article  Google Scholar 

  7. Guery B, Galperine T, Barbut F. Clostridioides difficile: diagnosis and treatments. BMJ. 2019;366:14609. https://doi.org/10.1136/bmj.l4609.

    Article  Google Scholar 

  8. Morgan DJ, Malani P, Diekema DJ. Diagnostic stewardship - leveraging the laboratory to improve antimicrobial use. JAMA. 2017;318(7):607–8. https://doi.org/10.1001/jama.2017.8531.

    Article  PubMed  Google Scholar 

  9. Patel R, Fang FC. Diagnostic stewardship: opportunity for a laboratory-infectious diseases partnership. Clin Infect Dis. 2018;67(5):799–801. https://doi.org/10.1093/cid/ciy077.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Messacar K, Parker SK, Todd JK, Dominguez SR. Implementation of rapid molecular infectious disease diagnostics: the role of diagnostic and antimicrobial stewardship. J Clin Microbiol. 2017;55(3):715–23. https://doi.org/10.1128/JCM.02264-16.

    Article  PubMed  PubMed Central  Google Scholar 

  11. •• McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018;66(7):e1–48. https://doi.org/10.1093/cid/ciy149Current IDSA/SHEA guidelines for diagnosis and management of CDI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Debast SB, Bauer MP, Kuijper EJ, Allerberger F, Bouza E, Coia JE, et al. European society of clinical microbiology and infectious diseases: update of the treatment guidance document for Clostridium difficile infection. Clin Microbiol Infect. 2014;20(S2):1–26. https://doi.org/10.1111/1469-0691.12418.

    Article  CAS  PubMed  Google Scholar 

  13. Madden GR, Poulter MD, Sifri CD. Diagnostic stewardship and the 2017 update of the IDSA-SHEA clinical practice guidelines for Clostridium difficile infection. Diagnosis (Berl). 2018;5(3):119–25. https://doi.org/10.1515/dx-2018-0012.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chang TW, Gorbach SL, Bartlett JB. Neutralization of Clostridium difficile toxin by Clostridium sordellii antitoxins. Infect Immun. 1978;22(2):418–22.

    Article  CAS  Google Scholar 

  15. Planche TD, Davies KA, Coen PG, Finney JM, Monahan IM, Morris KA, et al. Differences in outcome according to Clostridium difficile testing method: a prospective multicentre diagnostic validation study of C difficile infection. Lancet Infect Dis. 2013;13(11):936–45. https://doi.org/10.1016/S1473-3099(13)70200-7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gerding DN, Olson MM, Peterson LR, Teasley DG, Gebhard RL, Schwartz ML, et al. Clostridium difficile -associated diarrhea and colitis in adults. a prospective case-controlled epidemiologic study. Arch Intern Med. 1986;146(1):95–100. https://doi.org/10.1001/archinte.1986.00360130117016.

    Article  CAS  PubMed  Google Scholar 

  17. Peterson LR, Olson MM, Shanholtzer CJ, Gerding DN. Results of a prospective, 18-month clinical evaluation of culture, cytotoxin testing, and culturette brand (CDT) latex testing in the diagnosis of Clostridium difficile-associated diarrhea. Diagn Microbiol Infect Dis. 1988;10(2):85–91. https://doi.org/10.1016/0732-8893(88)90045-4.

    Article  CAS  PubMed  Google Scholar 

  18. Chen S, Gu H, Sun C, Wang H, Wang J. Rapid detection of Clostridium difficile toxins and laboratory diagnosis of Clostridium difficile infections. Infection. 2017;45:255–62. https://doi.org/10.1007/s15010-016-0940-9.

    Article  CAS  PubMed  Google Scholar 

  19. Manabe YC, Vinetz JM, Moore RD, Merz C, Charache P, Bartlett JG. Clostridium difficile colitis: an efficient clinical approach to diagnosis. Ann Intern Med. 1995;123(11):835–40. https://doi.org/10.7326/0003-4819-123-11-199512010-00004.

    Article  CAS  PubMed  Google Scholar 

  20. Musher DM, Manhas A, Jain P, Nuila F, Wagar A, Logan N, et al. Detection of Clostridium difficile toxin: comparison of enzyme immunoassay results with results obtained by cytotoxicity assay. J Clin Microbiol. 2007;45(8):2737–9. https://doi.org/10.1128/JCM.00686-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brecher SM, Novak-Weekley SM, Nagy E. Laboratory diagnosis of Clostridium difficile infections: there is light at the end of the colon. Clin Infect Dis. 2013;57(8):1175–81. https://doi.org/10.1093/cid/cit424.

    Article  CAS  PubMed  Google Scholar 

  22. Kufelnicka AM, Kirn TJ. Effective utilization of evolving methods for the laboratory diagnosis of Clostridium difficile infection. Clin Infect Dis. 2011;52(12):1451–7. https://doi.org/10.1093/cid/cir201.

    Article  PubMed  Google Scholar 

  23. Sloan LM, Duresko BJ, Gustafson DR, Rosenblatt JE. Comparison of real-time PCR for detection of the tcdC gene with four toxin immunoassays and culture in diagnosis of Clostridium difficile infection. J Clin Microbiol. 2008;46(6):1996–2001. https://doi.org/10.1128/JCM.00032-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dallal RM, Harbrecht BG, Boujoukas AJ, Sirio CA, Farkas LM, Lee KK, et al. Fulminant Clostridium difficile: An underappreciated and increasing cause of death and complications. Ann Surg. 2002;235(3):363–72. https://doi.org/10.1097/00000658-200203000-00008.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Burnham CA, Carroll KC. Diagnosis of Clostridium difficile infection: an ongoing conundrum for clinicians and for clinical laboratories. Clin Microbiol Rev. 2013;26(3):604–30. https://doi.org/10.1128/CMR.00016-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bagdasarian N, Rao K, Malani PN. Diagnosis and treatment of Clostridium difficile in adults: a systematic review. JAMA. 2015;313(4):398–408. https://doi.org/10.1001/jama.2014.17103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pépin J, Valiquette L, Alary ME, Villemure P, Pelletier A, Forget K, et al. Clostridium difficile-associated diarrhea in a region of Quebec from 1991 to 2003: a changing pattern of disease severity. CMAJ. 2004;171(5):466–72. https://doi.org/10.1503/cmaj.1041104.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bélanger SD, Boissinot M, Clairoux N, Picard FJ, Bergeron MG. Rapid detection of Clostridium difficile in feces by real-time PCR. J Clin Microbiol. 2003;41(2):730–4. https://doi.org/10.1128/jcm.41.2.730-734.2003.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pancholi P, Kelly C, Raczkowski M, Balada-Llasat JM. Detection of toxigenic Clostridium difficile: comparison of the cell culture neutralization, Xpert C. difficile, Xpert C. difficile/Epi, and Illumigene C. difficile assays. J Clin Microbiol. 2012;50(4):1331–5. https://doi.org/10.1128/JCM.06597-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dubberke ER, Han Z, Bobo L, Hink T, Lawrence B, Copper S, et al. Impact of clinical symptoms on interpretation of diagnostic assays for Clostridium difficile infections. J Clin Microbiol. 2011;49(8):2887–93. https://doi.org/10.1128/JCM.00891-11.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Goldenberg SD, Price NM, Tucker D, Wade P, French GL. Mandatory reporting and improvements in diagnosing Clostridium difficile infection: An incompatible dichotomy? J Infect. 2011;62(5):363–70. https://doi.org/10.1016/j.jinf.2011.03.007.

    Article  PubMed  Google Scholar 

  32. Gould CV, Edwards JR, Cohen J, Bamberg WM, Clark LA, Farley MM, et al. Effect of nucleic acid amplification testing on population-based incidence rates of Clostridium difficile infection. Clin Infect Dis. 2013;57(9):1304–7. https://doi.org/10.1093/cid/cit492.

    Article  CAS  PubMed  Google Scholar 

  33. Moehring RW, Lofgren ET, Anderson DJ. Impact of change to molecular testing for Clostridium difficile infection on healthcare facility–associated incidence rates. Infect Control Hosp Epidemiol. 2013;34(10):1055–61. https://doi.org/10.1086/673144.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Musher DM, Stager C. Diagnosis of Clostridium difficile infection. Clin Infect Dis. 2012;54(11):1675–6. https://doi.org/10.1093/cid/cis259.

    Article  PubMed  Google Scholar 

  35. Koo HL, Van JN, Zhao M, Ye X, Revell PA, Jiang Z-D, et al. Real-time polymerase chain reaction detection of asymptomatic Clostridium difficile colonization and rising C. difficile –associated disease rates. Infect Control Hosp Epidemiol. 2014;35(6):667–73. https://doi.org/10.1086/676433.

    Article  PubMed  Google Scholar 

  36. Ilieş I, Benneyan JC, Jabur TBC, Baker AW, Anderson DJ. Impact of molecular testing on reported Clostridioides difficile infection rates. Infect Control Hosp Epidemiol. 2020;41(3):306–12. https://doi.org/10.1017/ice.2019.327.

    Article  PubMed  Google Scholar 

  37. Walker AS, Eyre DW, Wyllie DH, Dingle KE, Harding RM, O’Connor L, et al. Characterisation of Clostridium difficile hospital ward-based transmission using extensive epidemiological data and molecular typing. PLoS Med. 2012;9(2):e1001172. https://doi.org/10.1371/journal.pmed.1001172.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Svenungsson B, Burman LG, Jalakas-Pörnull K, Lagergren Å, Struwe J, Åkerlund T. Epidemiology and molecular characterization of Clostridium difficile strains from patients with diarrhea: low disease incidence and evidence of limited cross-infection in a Swedish teaching hospital. J Clin Microbiol. 2003;41(9):4031–7. https://doi.org/10.1128/jcm.41.9.4031-4037.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Norén T, Akerlund T, Back E, Sjoberg L, Persson I, Alriksson I, et al. Molecular epidemiology of hospital-associated and community-acquired Clostridium difficile infection in a Swedish county. J Clin Microbiol. 2004;42(8):3635–43. https://doi.org/10.1128/jcm.42.8.3635-3643.2004.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Eyre DW, Cule ML, Wilson DJ, Griffiths D, Vaughan A, O’Connor L, et al. Diverse sources of C. difficile infection identified on whole-genome sequencing. N Engl J Med. 2013;369(13):1195–205. https://doi.org/10.1056/NEJMoa1216064.

    Article  CAS  PubMed  Google Scholar 

  41. Blixt T, Gradel KO, Homann C, Seidelin JB, Schønning K, Lester A, et al. Asymptomatic carriers contribute to nosocomial Clostridium difficile infection: a cohort study of 4508 patients. Gastroenterology. 2017;152(5):1031–1041.e2. https://doi.org/10.1053/j.gastro.2016.12.035.

    Article  PubMed  Google Scholar 

  42. Curry SR, Muto CA, Schlackman JL, Pasculle AW, Shutt KA, Marsh JW, et al. Use of multilocus variable number of tandem repeats analysis genotyping to determine the role of asymptomatic carriers in Clostridium difficile transmission. Clin Infect Dis. 2013;57(8):1094–102. https://doi.org/10.1093/cid/cit475.

    Article  PubMed  PubMed Central  Google Scholar 

  43. . Polage CR, Gyorke CE, Kennedy MA, Leslie JL, Chin DL, Wang S, et al. Overdiagnosis of Clostridium difficile infection in the molecular test era. JAMA Intern Med. 2015;175(11):1792–801. https://doi.org/10.1001/jamainternmed.2015.4114Study highlighting the pitfalls of stand-alone NAAT testing for diagnosis of CDI.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rock C, Pana Z, Leekha S, Trexler P, Andonian J, Gadala A, et al. National Healthcare Safety Network laboratory-identified Clostridium difficile event reporting: a need for diagnostic stewardship. Am J Infect Control. 2018;46(4):456–8. https://doi.org/10.1016/j.ajic.2017.10.011.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kraft CS, Parrott JS, Cornish NE, Rubinstein ML, Weissfield AS, McNult P, et al. A laboratory medicine best practices systematic review and meta-analysis of nucleic acid amplification tests (NAATs) and algorithms including NAATs for the diagnosis of Clostridioides (Clostridium) difficile in adults. Clin Microbiol Rev. 2019;32(3):e00032–18. https://doi.org/10.1128/CMR.00032-18.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Luo RF, Banaei N. Is repeat PCR needed for diagnosis of Clostridium difficile infection? J Clin Microbiol. 2010;48(10):3738–41. https://doi.org/10.1128/JCM.00722-10.

    Article  PubMed  PubMed Central  Google Scholar 

  47. • Truong CY, Gombar S, Wilson R, Sundararajan G, Tekic N, Holubar M, et al. Real-time electronic tracking of diarrheal episodes and laxative therapy enables verification of Clostridium difficile clinical testing criteria and reduction of Clostridium difficile infection rates. J Clin Microbiol. 2017;55(5):1276–84. https://doi.org/10.1128/JCM.02319-16Quasi-experimental study where strict pre-analytic C. difficile testing criteria were implemented and resulted in decreased HO-CDI rates with no increase in complications associated with canceled tests.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Carter KA, Malani AN. Laxative use and testing for Clostridium difficile in hospitalized adults: an opportunity to improve diagnostic stewardship. Am J Infect Control. 2019;47(2):170–4. https://doi.org/10.1016/j.ajic.2018.08.008.

    Article  PubMed  Google Scholar 

  49. White NC, Mendo-Lopez R, Papamichael K, Cuddemi CA, Barrett C, Daugherty K, et al. Laxative use does not preclude diagnosis or reduce disease severity in Clostridioides difficile infection [published online ahead of print Oct 4 2019]. Clin Infect Dis. Available from: https://doi.org/10.1093/cid/ciz978.

  50. Barlam TF, Cosgrove SE, Abbo LM, Macdougall C, Schuetz AN, Septimus EJ, et al. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis. 2016;62(10):e51–77. https://doi.org/10.1093/cid/ciw118.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Buckel WR, Avdic E, Carroll KC, Gunaseelan V, Hadhazy E, Cosgrove SE. Gut check: Clostridium difficile testing and treatment in the molecular testing era. Infect Control Hosp Epidemiol. 2015;36(2):217–21. https://doi.org/10.1017/ice.2014.19.

    Article  PubMed  Google Scholar 

  52. Yen C, Holtom P, Butler-Wu SM, Wald-Dickler N, Shulman I, Spellberg B. Reducing Clostridium difficile colitis rates via cost-saving diagnostic stewardship. Infect Control Hosp Epidemiol. 2018;39(6):734–6. https://doi.org/10.1017/ice.2018.51.

    Article  PubMed  Google Scholar 

  53. Kociolek LK, Bovee M, Carter D, Ciolino JD, Patel R, O’Donnell A, et al. Impact of a healthcare provider educational intervention on frequency of Clostridium difficile polymerase chain reaction testing in children: a segmented regression analysis. J Pediatric Infect Dis Soc. 2017;6(2):142–8. https://doi.org/10.1093/jpids/piw027.

    Article  PubMed  Google Scholar 

  54. • Christensen AB, Barr VO, Martin DW, Anderson MM, Gibson AK, Hoff BM, et al. Diagnostic stewardship of C. difficile testing: a quasi-experimental antimicrobial stewardship study. Infect Control Hosp Epidemiol. 2019;40(3):269–75. https://doi.org/10.1017/ice.2018.336Quasi-experimental study which showed successful implementation of a multi-modal diagnostic stewardship strategy with reduction of positive NAATs, HO-CDI, and PO vancomycin utilization.

    Article  PubMed  Google Scholar 

  55. Luo RF, Spradley S, Banaei N. Alerting physicians during electronic order entry effectively reduces unnecessary repeat PCR testing for Clostridium difficile. J Clin Microbiol. 2013;51(11):3872–4. https://doi.org/10.1128/JCM.01724-13.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bilinskaya A, Goodlet KJ, Nailor MD. Evaluation of a best practice alert to reduce unnecessary Clostridium difficile testing following receipt of a laxative. Diagn Microbiol Infect Dis. 2018;92(1):50–5. https://doi.org/10.1016/j.diagmicrobio.2018.04.009.

    Article  PubMed  Google Scholar 

  57. White DR, Hamilton KW, Pegues DA, Hanish A, Umscheid CA. The impact of a computerized clinical decision support tool on inappropriate Clostridium difficile testing. Infect Control Hosp Epidemiol. 2017;38(10):1204–8. https://doi.org/10.1017/ice.2017.161.

    Article  PubMed  Google Scholar 

  58. Kwon JH, Reske KA, Hink T, Jackups R, Burnham CD, Dubberke ER. Impact of an electronic hard-stop clinical decision support tool to limit repeat Clostridioides difficile toxin enzyme immunoassay testing on test utilization. Infect Control Hosp Epidemiol. 2019:1423–6. https://doi.org/10.1017/ice.2019.275.

  59. Howard-Anderson JR, Sexton ME, Robichaux C, Wiley Z, Varkey JB, Suchindran S, et al. The impact of an electronic medical record nudge on reducing testing for hospital-onset Clostridioides difficile infection [published online ahead of print Feb 10 2020]. Infect Control Hosp Epidemiol. . https://doi.org/10.1017/ice.2020.12.

  60. Quan KA, Yim J, Merrill D, Khusbu U, Madey K, Dickey L, et al. Reductions in Clostridium difficile infection (CDI) rates using real-time automated clinical criteria verification to enforce appropriate testing. Infect Control Hosp Epidemiol. 2018;39(5):625–7. https://doi.org/10.1017/ice.2018.32.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sperling K, Priddy A, Suntharam N, Feuerhake T. Optimizing testing for Clostridium difficile infection: a quality improvement project. Am J Infect Control. 2019;47(3):340–2. https://doi.org/10.1016/j.ajic.2018.08.027.

    Article  PubMed  Google Scholar 

  62. Fleming MS, Hess O, Albert HL, Styslinger E, Doll M, Nguyen HJ, et al. Test stewardship, frequency and fidelity: impact on reported hospital-onset Clostridioides difficile. Infect Control Hosp Epidemiol. 2019;40(6):710–2. https://doi.org/10.1017/ice.2019.63.

    Article  PubMed  Google Scholar 

  63. Madden GR, German Mesner I, Cox HL, Mathers AJ, Lyman JA, Sifri CD, et al. Reduced Clostridium difficile tests and laboratory-identified events with a computerized clinical decision support tool and financial incentive. Infect Control Hosp Epidemiol. 2018;39(6):737–40. https://doi.org/10.1017/ice.2018.53.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Friedland AE, Brown S, Glick DR, Lusby MC, Lemkin D, Leekha S. Use of computerized clinical decision support for diagnostic stewardship in Clostridioides difficile testing: an academic hospital quasi-experimental study. J Gen Intern Med. 2019;34(1):31–2. https://doi.org/10.1007/s11606-018-4659-4.

    Article  PubMed  Google Scholar 

  65. Mizusawa M, Small BA, Hsu YJ, Sharara SL, Advic E, Kauffman C, et al. Prescriber behavior in Clostridioides difficile testing: a 3-hospital diagnostic stewardship intervention. Clin Infect Dis. 2019;69(11):2019–21. https://doi.org/10.1093/cid/ciz295.

    Article  PubMed  Google Scholar 

  66. Blanco N, O’Hara LM, Robinson GL, Brown J, Heil E, Brown CH, et al. Health care worker perceptions toward computerized clinical decision support tools for Clostridium difficile infection reduction: a qualitative study at 2 hospitals. Am J Infect Control. 2018;46(10):1060–6. https://doi.org/10.1016/j.ajic.2018.04.204.

    Article  Google Scholar 

  67. Lin MY, Wiksten T, Tomich A, Hayden MK, Segreti J. Impact of mandatory infectious disease (ID) specialist approval on hospital-onset Clostridium difficile (HO-CDI) testing and infection rates: results of a pilot study. Open Forum Infect Dis. 2018;5(Suppl 1):S38–9. https://doi.org/10.1093/ofid/ofy209.090.

    Article  PubMed Central  Google Scholar 

  68. Jakharia KK, Ilaiwy G, Moose SS, Waga M, Appalla L, Mcalduff JD, et al. Use of whole-genome sequencing to guide a Clostridioides difficile diagnostic stewardship program. Infect Control Hosp Epidemiol. 2019;40(7):804–6. https://doi.org/10.1017/ice.2019.124.

    Article  PubMed  Google Scholar 

  69. Peng Z, Ling L, Stratton CW, Li C, Polage CR, Wu B, et al. Advances in the diagnosis and treatment of Clostridium difficile infections. Emerg Microbes Infect. 2018;7(1):15. https://doi.org/10.1038/s41426-017-0019-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gateau C, Couturier J, Coia J, Barbut F. How to: diagnose infection caused by Clostridium difficile. Clin Microbiol Infect. 2018;24(5):463–8. https://doi.org/10.1016/j.cmi.2017.12.005.

    Article  CAS  PubMed  Google Scholar 

  71. Lewis BB, Buffie CG, Carter RA, Leiner I, Toussaint NC, Miller LC, et al. Loss of microbiota-mediated colonization resistance to Clostridium difficile infection with oral vancomycin compared with metronidazole. J Infect Dis. 2015;212(10):1656–65. https://doi.org/10.1093/infdis/jiv256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Isaac S, Scher JU, Djukovic A, Jiménez N, Littman DR, Abramson SB, et al. Short- and long-term effects of oral vancomycin on the human intestinal microbiota. J Antimicrob Chemother. 2017;72(1):128–36. https://doi.org/10.1093/jac/dkw383.

    Article  CAS  PubMed  Google Scholar 

  73. Marra AR, Edmond MB, Ford BA, Herwaldt LA, Algwizani AR, Diekema DJ. Failure of risk-adjustment by test method for C. difficile laboratory-identified event reporting. Infect Control Hosp Epidemiol. 2017;38(1):109–11. https://doi.org/10.1017/ice.2016.227.

    Article  PubMed  Google Scholar 

  74. Hota SS, Doll M, Bearman G. Preventing Clostridioides difficile infection in hospitals: what is the endgame? BMJ Qual Saf. 2020;29(2):157–60. https://doi.org/10.1136/bmjqs-2019-009953.

    Article  PubMed  Google Scholar 

  75. Dionne LL, Raymond F, Corbeil J, Longtin J, Gervais P, Longtin Y. Correlation between Clostridium difficile bacterial load, commercial real-time PCR cycle thresholds, and results of diagnostic tests based on enzyme immunoassay and cell culture cytotoxicity assay. J Clin Microbiol. 2013;51(11):3624–30. https://doi.org/10.1128/JCM.01444-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Leslie JL, Cohen SH, Solnick JV, Polage CR. Role of fecal Clostridium difficile load in discrepancies between toxin tests and PCR: is quantitation the next step in C. difficile testing? Eur J Clin Microbiol Infect Dis. 2012;31(12):3295–9. https://doi.org/10.1007/s10096-012-1695-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Garvey MI, Bradley CW, Wilkinson MAC, Holden E. Can a toxin gene NAAT be used to predict toxin EIA and the severity of Clostridium difficile infection? Antimicrob Resist Infect Control. 2017;6(1):6–10. https://doi.org/10.1186/s13756-017-0283-z.

    Article  Google Scholar 

  78. Kamboj M, Brite J, McMillen T, Robilotti E, Herrera A, Sepkowitz K, et al. Potential of real-time PCR threshold cycle (CT) to predict presence of free toxin and clinically relevant C. difficile infection (CDI) in patients with cancer. J Infect. 2018;76(4):369–75. https://doi.org/10.1016/j.jinf.2017.12.001.

    Article  PubMed  Google Scholar 

  79. Davies KA, Planche T, Wilcox MH. The predictive value of quantitative nucleic acid amplification detection of Clostridium difficile toxin gene for faecal sample toxin status and patient outcome. PLoS One. 2018;13(12):1–9. https://doi.org/10.1371/journal.pone.0205941.

    Article  CAS  Google Scholar 

  80. Reigadas E, Alcalá L, Valerio M, Marín M, Martin A, Bouza E. Toxin B PCR cycle threshold as a predictor of poor outcome of Clostridium difficile infection: a derivation and validation cohort study. J Antimicrob Chemother. 2016;71(5):1380–5. https://doi.org/10.1093/jac/dkv497.

    Article  CAS  PubMed  Google Scholar 

  81. Jazmati N, Hellmich M, Ličanin B, Plum G, Kaasch AJ. PCR cycle threshold value predicts the course of Clostridium difficile infection. Clin Microbiol Infect. 2016;22(2):e7–8. https://doi.org/10.1016/j.cmi.2015.09.012.

    Article  CAS  PubMed  Google Scholar 

  82. Hitchcock MM, Holubar M, Hogan CA, Tompkins LS, Banaei N. Dual reporting of Clostridioides difficile PCR and predicted toxin result based on PCR cycle threshold reduces treatment of toxin-negative patients without increases in adverse outcomes. J Clin Microbiol. 2019;57(11):e01288–19. https://doi.org/10.1128/JCM.01288-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Senchyna F, Gaur RL, Gombar S, Truong CY, Schroeder LF, Banaei N. Clostridium difficile PCR cycle threshold predicts free toxin. J Clin Microbiol. 2017;55(9):2651–60. https://doi.org/10.1128/JCM.00563-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kim HN, Kim H, Moon HW, Hur M, Yun YM. Toxin positivity and tcdB gene load in broad-spectrum Clostridium difficile infection. Infection. 2018;46(1):113–7. https://doi.org/10.1007/s15010-017-1108-y.

    Article  CAS  PubMed  Google Scholar 

  85. Schwenk HT, Bio LL, Kruger JF, Banaei N. Clinical impact of Clostridium difficile PCR cycle threshold–predicted toxin reporting in pediatric patients. J Pediatric Infect Dis Soc. 2020;9(1):44–50. https://doi.org/10.1093/jpids/piy117.

    Article  CAS  PubMed  Google Scholar 

  86. Wilmore S, Goldenberg SD. Potential of real-time PCR threshold cycle (CT) to predict presence of free toxin and clinically relevant C. difficile infection (CDI) in patients with cancer: a reply. J Infect. 2018;76(4):424–6. https://doi.org/10.1016/j.jinf.2018.01.001.

    Article  PubMed  Google Scholar 

  87. Quinn CD, Sefers SE, Babiker W, He Y, Alcabasa R, Stratton CW, et al. C. Diff Quik Chek complete enzyme immunoassay provides a reliable first-line method for detection of Clostridium difficile in stool specimens. J Clin Microbiol. 2010;48(2):603–5. https://doi.org/10.1128/JCM.01614-09.

    Article  CAS  PubMed  Google Scholar 

  88. Zou J, Leung V, Champagne S, Hinch M, Wong A, Lloyd-Smith E, et al. Clinical heterogeneity of patients with stool samples testing PCR+/Tox− from a two-step Clostridium difficile diagnostic algorithm. Eur J Clin Microbiol Infect Dis. 2018;37(12):2355–9. https://doi.org/10.1007/s10096-018-3383-7.

    Article  PubMed  Google Scholar 

  89. Miller R, Morillas JA, Brizendine KD, Fraser TG. Predictors of Clostridioides difficile infection-related complications and treatment patterns among nucleic acid amplification test-positive/toxin enzyme immunoassay-negative patients. J Clin Microbiol. 2020;58(3):e01764–19. https://doi.org/10.1128/JCM.01764-19.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Dubberke ER, Burnham CA. Diagnosis of Clostridium difficile infection: treat the patient, not the test. JAMA Intern Med. 2015;175(11):1801–2. https://doi.org/10.1001/jamainternmed.2015.4607.

    Article  PubMed  Google Scholar 

  91. Donskey CJ, Kundrapu S, Deshpande A. Colonization versus carriage of Clostridium difficile. Infect Dis Clin North Am. 2015;29(1):13–28. https://doi.org/10.1016/j.idc.2014.11.001.

    Article  PubMed  Google Scholar 

  92. Hung YP, Lee JC, Lin HJ, Liu HC, Wu YH, Tsai PJ, et al. Clinical impact of Clostridium difficile colonization. J Microbiol Immunol Infect. 2015;48(3):241–8. https://doi.org/10.1016/j.jmii.2014.04.011.

    Article  CAS  PubMed  Google Scholar 

  93. Morgan DJ, Diekema DJ, Sepkowitz K, Perencevich EN. Adverse outcomes associated with contact precautions: A review of the literature. Am J Infect Control. 2009;37(2):85–93. https://doi.org/10.1016/j.ajic.2008.04.257.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Dubberke ER, Carling P, Carrico R, Donskey CJ, Loo VG, McDonald LC, et al. Strategies to prevent Clostridium difficile infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol. 2014;35(6):628–45. https://doi.org/10.1017/s0899823x00193857.

    Article  PubMed  Google Scholar 

  95. Origüen J, Corbella L, Orellana M, Fernández-Ruiz M, López-Medrano F, San Juan R, et al. Comparison of the clinical course of Clostridium difficile infection in glutamate dehydrogenase-positive toxin-negative patients diagnosed by PCR to those with a positive toxin test. Clin Microbiol Infect. 2018;24(4):414–21. https://doi.org/10.1016/j.cmi.2017.07.033.

    Article  PubMed  Google Scholar 

  96. Song L, Zhao M, Duffy DC, Hansen J, Shields K, Wungjiranirun M, et al. Development and validation of digital enzyme-linked immunosorbent assays for ultrasensitive detection and quantification of Clostridium difficile toxins in stool. J Clin Microbiol. 2015;53(10):3204–12. https://doi.org/10.1128/JCM.01334-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sandlund J, Estis J, Katzenbach P, Nolan N, Hinson K, Herres J, et al. Increased clinical specificity with ultrasensitive detection of Clostridioides difficile toxins: reduction of overdiagnosis compared to nucleic acid amplification tests. J Clin Microbiol. 2019;57(11):e00945–19. https://doi.org/10.1128/JCM.00945-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Doll M, Fleming M, Stevens MP, Bearman G. Clostridioides difficile–associated diarrhea: infection prevention unknowns and evolving risk reduction strategies. Curr Infect Dis Rep. 2019;21(1):1–9. https://doi.org/10.1007/s11908-019-0659-8.

    Article  PubMed  Google Scholar 

  99. Emberger J, Tassone D, Stevens MP, Markley JD. The current state of antimicrobial stewardship: challenges, successes, and future directions. Curr Infect Dis Rep. 2018;20(9):31. https://doi.org/10.1007/s11908-018-0637-6.

    Article  PubMed  Google Scholar 

  100. Turner MC, Behrens SL, Webster W, Huslage K, Smith BA, Wrenn R, et al. Multidisciplinary approach to Clostridium difficile infection in adult surgical patients. J Am Coll Surg. 2019;228(4):570–80. https://doi.org/10.1016/j.jamcollsurg.2018.12.045.

    Article  PubMed  Google Scholar 

  101. Thompson I, Lavelle C, Leonard L. An evaluation of the effectiveness of an algorithm intervention in reducing inappropriate faecal samples sent for Clostridium difficile testing. J Infect Prev. 2016;17(6):278–86. https://doi.org/10.1177/1757177416657163.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Cook PP, Nichols S, Coogan M, Opera J, DeHart M. Reduction in testing and change in testing algorithm associated with decrease in number of nosocomial Clostridioides (Clostridium) difficile infections [published online ahead of print Feb 7 2020]. Am J Infect Control. . https://doi.org/10.1016/j.ajic.2019.12.028.

  103. Drees M, Dressler R, Taylor K, Ayala J, Kahigian G, Briody C, et al. Testing stewardship: a ‘hard stop’ to reduce inappropriate C. diff testing. Open Forum Infect Dis. 2017;4(Suppl 1):S1–2. https://doi.org/10.1093/ofid/ofx162.002.

    Article  PubMed Central  Google Scholar 

  104. Orendi JM, Monnery DJ, Manzoor S, Hawkey PM. A two-stage algorithm for Clostridium difficile including PCR: can we replace the toxin EIA? J Hosp Infect. 2012;80(1):82–4. https://doi.org/10.1016/j.jhin.2011.09.012.

    Article  CAS  PubMed  Google Scholar 

  105. Polage CR, Grein J, Morgan M, Doernberg SB, Miller S, Chinn R, et al. Effect of Clostridioides difficile (C. difficile) toxin test reporting on clinical treatment and outcomes of toxin-negative PCR-positive patients at five California hospitals. Open Forum Infect Dis. 2019;6(Suppl 2):S10–1. https://doi.org/10.1093/ofid/ofz359.024.

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Emberger MD, MPH.

Ethics declarations

Conflict of Interest

Jennifer Emberger declares that she has no conflict of interest.

Matthew Hitchcock declares that he has no conflict of interest.

J. Daniel Markley declares that has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Microbial Stewardship

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emberger, J., Hitchcock, M. & Markley, J.D. Diagnostic Stewardship Approaches to Clostridioides difficile Infection in the Era of Two-Step Testing: a Shifting Landscape. Curr Treat Options Infect Dis 12, 258–274 (2020). https://doi.org/10.1007/s40506-020-00223-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40506-020-00223-8

Keywords

Navigation