Skip to main content

Advertisement

Log in

Tropical Diseases in HIV

  • HIV Medicine (C Yoon, Section Editor)
  • Published:
Current Treatment Options in Infectious Diseases Aims and scope Submit manuscript

Abstract

Purpose of review

With the rise of HIV, its impact on tropical infections has been undeniable. The presence of some tropical pathogens can facilitate the transmission of HIV, whereas untreated HIV infection can lead to the earlier and more severe presentation of a variety of tropical diseases and can make their treatment more challenging. Although the quality and availability of antiretroviral therapy has advanced significantly over the last two decades, it may not be readily available to all populations in low-resource regions.

Recent findings

In addition, very little research has been done regarding drug interactions between antiretroviral therapy and medications used to treat tropical diseases.

Summary

This article reviews existing data on coinfections of the most common tropical diseases and HIV, as well as current strategies for their treatment and control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Soil-transmitted helminthiases. World Health Organization. 2018. http://www.who.int/gho/neglected_diseases/soil_transmitted_helminthiases/en/. Accessed 11/06/2018.

  2. Siegel MO, Simon GL. Is human immunodeficiency virus infection a risk factor for Strongyloides stercoralis hyperinfection and dissemination. PLoS Negl Trop Dis. 2012;6(7):e1581. https://doi.org/10.1371/journal.pntd.0001581.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Feitosa G, Bandeira AC, Sampaio DP, Badaro R, Brites C. High prevalence of giardiasis and stronglyloidiasis among HIV-infected patients in Bahia, Brazil. Braz J Infect Dis. 2001;5(6):339–44.

    Article  CAS  Google Scholar 

  4. Morawski BM, Yunus M, Kerukadho E, Turyasingura G, Barbra L, Ojok AM, et al. Hookworm infection is associated with decreased CD4+ T cell counts in HIV-infected adult Ugandans. PLoS Negl Trop Dis. 2017;11(5):e0005634. https://doi.org/10.1371/journal.pntd.0005634.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brown M, Kizza M, Watera C, Quigley MA, Rowland S, Hughes P, et al. Helminth infection is not associated with faster progression of HIV disease in coinfected adults in Uganda. J Infect Dis. 2004;190(10):1869–79. https://doi.org/10.1086/425042.

    Article  PubMed  Google Scholar 

  6. Fekadu S, Taye K, Teshome W, Asnake S. Prevalence of parasitic infections in HIV-positive patients in southern Ethiopia: a cross-sectional study. J Infect Dev Ctries. 2013;7(11):868–72. https://doi.org/10.3855/jidc.2906.

    Article  PubMed  Google Scholar 

  7. Bentwich Z, Kalinkovich A, Weisman Z. Immune activation is a dominant factor in the pathogenesis of African AIDS. Immunol Today. 1995;16(4):187–91.

    Article  CAS  Google Scholar 

  8. Bentwich Z, Kalinkovich A, Weisman Z, Grossman Z. Immune activation in the context of HIV infection. Clin Exp Immunol. 1998;111(1):1–2.

    Article  CAS  Google Scholar 

  9. Modjarrad K, Zulu I, Redden DT, Njobvu L, Lane HC, Bentwich Z, et al. Treatment of intestinal helminths does not reduce plasma concentrations of HIV-1 RNA in coinfected Zambian adults. J Infect Dis. 2005;192(7):1277–83. https://doi.org/10.1086/444543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Walson J, Singa B, Sangare L, Naulikha J, Piper B, Richardson B, et al. Empiric deworming to delay HIV disease progression in adults with HIV who are ineligible for initiation of antiretroviral treatment (the HEAT study): a multi-site, randomised trial. Lancet Infect Dis. 2012;12(12):925–32. https://doi.org/10.1016/S1473-3099(12)70207-4.

    Article  PubMed  Google Scholar 

  11. Abossie A, Petros B. Deworming and the immune status of HIV positive pre-antiretroviral therapy individuals in Arba Minch, Chencha and Gidole hospitals, Southern Ethiopia. BMC Res Notes. 2015;8:483. https://doi.org/10.1186/s13104-015-1461-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bentwich Z, Maartens G, Torten D, Lal AA, Lal RB. Concurrent infections and HIV pathogenesis. AIDS. 2000;14(14):2071–81.

    Article  CAS  Google Scholar 

  13. Fischer P, Kipp W, Kabwa P, Buttner DW. Onchocerciasis and human immunodeficiency virus in western Uganda: prevalences and treatment with ivermectin. Am J Trop Med Hyg. 1995;53(2):171–8.

    CAS  PubMed  Google Scholar 

  14. Sentongo E, Rubaale T, Buttner DW, Brattig NW. T cell responses in coinfection with Onchocerca volvulus and the human immunodeficiency virus type 1. Parasite Immunol. 1998;20(9):431–9.

    Article  CAS  Google Scholar 

  15. Tawill SA, Gallin M, Erttmann KD, Kipp W, Bamuhiiga J, Buttner DW. Impaired antibody responses and loss of reactivity to Onchocerca volvulus antigens by HIV-seropositive onchocerciasis patients. Trans R Soc Trop Med Hyg. 1996;90(1):85–9.

    Article  CAS  Google Scholar 

  16. Njambe Priso GD, Lissom A, Ngu LN, Nji NN, Tchadji JC, Tchouangueu TF, et al. Filaria specific antibody response profiling in plasma from anti-retroviral naive Loa loa microfilaraemic HIV-1 infected people. BMC Infect Dis. 2018;18(1):160. https://doi.org/10.1186/s12879-018-3072-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hunt NH, Grau GE. Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria. Trends Immunol. 2003;24(9):491–9.

    Article  CAS  Google Scholar 

  18. Nielsen NO, Friis H, Magnussen P, Krarup H, Magesa S, Simonsen PE. Co-infection with subclinical HIV and Wuchereria bancrofti, and the role of malaria and hookworms, in adult Tanzanians: infection intensities, CD4/CD8 counts and cytokine responses. Trans R Soc Trop Med Hyg. 2007;101(6):602–12. https://doi.org/10.1016/j.trstmh.2007.02.009.

    Article  CAS  PubMed  Google Scholar 

  19. Talaat KR, Kumarasamy N, Swaminathan S, Gopinath R, Nutman TB. Filarial/human immunodeficiency virus coinfection in urban southern India. Am J Trop Med Hyg. 2008;79(4):558–60.

    Article  Google Scholar 

  20. Tafatatha T, Taegtmeyer M, Ngwira B, Phiri A, Kondowe M, Piston W, et al. Human immunodeficiency virus, antiretroviral therapy and markers of lymphatic filariasis infection: a cross-sectional study in rural northern Malawi. PLoS Negl Trop Dis. 2015;9(6):e0003825. https://doi.org/10.1371/journal.pntd.0003825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gopinath R, Ostrowski M, Justement SJ, Fauci AS, Nutman TB. Filarial infections increase susceptibility to human immunodeficiency virus infection in peripheral blood mononuclear cells in vitro. J Infect Dis. 2000;182(6):1804–8. https://doi.org/10.1086/317623.

    Article  CAS  PubMed  Google Scholar 

  22. Kroidl I, Saathoff E, Maganga L, Makunde WH, Hoerauf A, Geldmacher C, et al. Effect of Wuchereria bancrofti infection on HIV incidence in Southwest Tanzania: a prospective cohort study. Lancet. 2016;388(10054):1912–20. https://doi.org/10.1016/S0140-6736(16)31252-1.

    Article  PubMed  Google Scholar 

  23. Jessurun J, Barron-Rodriguez LP, Fernandez-Tinoco G, Hernandez-Avila M. The prevalence of invasive amebiasis is not increased in patients with AIDS. AIDS. 1992;6(3):307–9.

    Article  CAS  Google Scholar 

  24. Foyaca-Sibat H, Cowan LD, Carabin H, Targonska I, Anwary MA, Serrano-Ocana G, et al. Accuracy of serological testing for the diagnosis of prevalent neurocysticercosis in outpatients with epilepsy, Eastern Cape Province, South Africa. PLoS Negl Trop Dis. 2009;3(12):e562. https://doi.org/10.1371/journal.pntd.0000562.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Delobel P, Signate A, El Guedj M, Couppie P, Gueye M, Smadja D, et al. Unusual form of neurocysticercosis associated with HIV infection. Eur J Neurol. 2004;11(1):55–8.

    Article  CAS  Google Scholar 

  26. Prasad S, MacGregor RR, Tebas P, Rodriguez LB, Bustos JA, White AC Jr. Management of potential neurocysticercosis in patients with HIV infection. Clin Infect Dis. 2006;42(4):e30–4. https://doi.org/10.1086/499359.

    Article  PubMed  Google Scholar 

  27. Noormahomed EV, Nhacupe N, Mascaro-Lazcano C, Mauaie MN, Buene T, Funzamo CA, et al. A cross-sectional serological study of cysticercosis, schistosomiasis, toxocariasis and echinococcosis in HIV-1 infected people in Beira, Mozambique. PLoS Negl Trop Dis. 2014;8(9):e3121. https://doi.org/10.1371/journal.pntd.0003121.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schmidt V, Kositz C, Herbinger KH, Carabin H, Ngowi B, Naman E, et al. Association between Taenia solium infection and HIV/AIDS in northern Tanzania: a matched cross sectional-study. Infect Dis Poverty. 2016;5(1):111. https://doi.org/10.1186/s40249-016-0209-7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Serpa JA, Moran A, Goodman JC, Giordano TP, White AC Jr. Neurocysticercosis in the HIV era: a case report and review of the literature. Am J Trop Med Hyg. 2007;77(1):113–7.

    Article  Google Scholar 

  30. Javed A, Kalayarasan R, Agarwal AK. Liver hydatid with HIV infection: an association? J Gastrointest Surg. 2012;16(6):1275–7. https://doi.org/10.1007/s11605-011-1713-5.

    Article  PubMed  Google Scholar 

  31. Wahlers K, Menezes CN, Romig T, Kern P, Grobusch MP. Cystic echinococcosis in South Africa: the worst yet to come? Acta Trop. 2013;128(1):1–6. https://doi.org/10.1016/j.actatropica.2013.06.002.

    Article  PubMed  Google Scholar 

  32. Secor WE. The effects of schistosomiasis on HIV/AIDS infection, progression and transmission. Curr Opin HIV AIDS. 2012;7(3):254–9. https://doi.org/10.1097/COH.0b013e328351b9e3.

    Article  CAS  PubMed  Google Scholar 

  33. Downs JA, Mguta C, Kaatano GM, Mitchell KB, Bang H, Simplice H, et al. Urogenital schistosomiasis in women of reproductive age in Tanzania’s Lake Victoria region. Am J Trop Med Hyg. 2011;84(3):364–9. https://doi.org/10.4269/ajtmh.2011.10-0585.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Downs JA, van Dam GJ, Changalucha JM, Corstjens PL, Peck RN, de Dood CJ, et al. Association of schistosomiasis and HIV infection in Tanzania. Am J Trop Med Hyg. 2012;87(5):868–73. https://doi.org/10.4269/ajtmh.2012.12-0395.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Downs JA, Dupnik KM, van Dam GJ, Urassa M, Lutonja P, Kornelis D, et al. Effects of schistosomiasis on susceptibility to HIV-1 infection and HIV-1 viral load at HIV-1 seroconversion: a nested case-control study. PLoS Negl Trop Dis. 2017;11(9):e0005968. https://doi.org/10.1371/journal.pntd.0005968.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Leutscher P, Ramarokoto CE, Reimert C, Feldmeier H, Esterre P, Vennervald BJ. Community-based study of genital schistosomiasis in men from Madagascar. Lancet. 2000;355(9198):117–8. https://doi.org/10.1016/S0140-6736(99)04856-4.

    Article  CAS  PubMed  Google Scholar 

  37. Chenine AL, Shai-Kobiler E, Steele LN, Ong H, Augostini P, Song R, et al. Acute Schistosoma mansoni infection increases susceptibility to systemic SHIV clade C infection in rhesus macaques after mucosal virus exposure. PLoS Negl Trop Dis. 2008;2(7):e265. https://doi.org/10.1371/journal.pntd.0000265.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Siddappa NB, Hemashettar G, Shanmuganathan V, Semenya AA, Sweeney ED, Paul KS, et al. Schistosoma mansoni enhances host susceptibility to mucosal but not intravenous challenge by R5 Clade C SHIV. PLoS Negl Trop Dis. 2011;5(8):e1270. https://doi.org/10.1371/journal.pntd.0001270.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Karanja DM, Hightower AW, Colley DG, Mwinzi PN, Galil K, Andove J, et al. Resistance to reinfection with Schistosoma mansoni in occupationally exposed adults and effect of HIV-1 co-infection on susceptibility to schistosomiasis: a longitudinal study. Lancet. 2002;360(9333):592–6. https://doi.org/10.1016/S0140-6736(02)09781-7.

    Article  PubMed  Google Scholar 

  40. Colombe S, Lee MH, Masikini PJ, van Lieshout L, de Dood CJ, Hoekstra PT, et al. Decreased sensitivity of Schistosoma sp. egg microscopy in women and HIV-infected individuals. Am J Trop Med Hyg. 2018;98(4):1159–64. https://doi.org/10.4269/ajtmh.17-0790.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mwanakasale V, Vounatsou P, Sukwa TY, Ziba M, Ernest A, Tanner M. Interactions between Schistosoma haematobium and human immunodeficiency virus type 1: the effects of coinfection on treatment outcomes in rural Zambia. Am J Trop Med Hyg. 2003;69(4):420–8.

    Article  Google Scholar 

  42. Karanja DM, Boyer AE, Strand M, Colley DG, Nahlen BL, Ouma JH, et al. Studies on schistosomiasis in western Kenya: II. Efficacy of praziquantel for treatment of schistosomiasis in persons coinfected with human immunodeficiency virus-1. Am J Trop Med Hyg. 1998;59(2):307–11.

    Article  CAS  Google Scholar 

  43. Dzhivhuho GA, Rehrl SA, Ndlovu H, Horsnell WGC, Brombacher F, Williamson AL, et al. Chronic schistosomiasis suppresses HIV-specific responses to DNA-MVA and MVA-gp140 Env vaccine regimens despite antihelminthic treatment and increases helminth-associated pathology in a mouse model. PLoS Pathog. 2018;14(7):e1007182. https://doi.org/10.1371/journal.ppat.1007182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. World Malaria Report. World Health Organization. 2017. http://www.who.int/malaria/publications/world-malaria-report-2017/report/en/. Accessed Dec 2018.

  45. Hoffman IF, Jere CS, Taylor TE, Munthali P, Dyer JR, Wirima JJ, et al. The effect of Plasmodium falciparum malaria on HIV-1 RNA blood plasma concentration. AIDS. 1999;13(4):487–94.

    Article  CAS  Google Scholar 

  46. French N, Nakiyingi J, Lugada E, Watera C, Whitworth JA, Gilks CF. Increasing rates of malarial fever with deteriorating immune status in HIV-1-infected Ugandan adults. AIDS. 2001;15(7):899–906.

    Article  CAS  Google Scholar 

  47. Jegede FE, Oyeyi TI, Abdulrahman SA, Mbah HA, Badru T, Agbakwuru C, et al. Effect of HIV and malaria parasites co-infection on immune-hematological profiles among patients attending anti-retroviral treatment (ART) clinic in infectious disease hospital Kano, Nigeria. PLoS One. 2017;12(3):e0174233. https://doi.org/10.1371/journal.pone.0174233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Okonkwo I, Ibadin M, Sadoh W, Omoigberale A. A study of malaria parasite density in HIV-1 positive under-fives in Benin City, Nigeria. J Trop Pediatr. 2018;64(4):289–96. https://doi.org/10.1093/tropej/fmx065.

    Article  PubMed  Google Scholar 

  49. Abu-Raddad LJ, Patnaik P, Kublin JG. Dual infection with HIV and malaria fuels the spread of both diseases in sub-Saharan Africa. Science. 2006;314(5805):1603–6. https://doi.org/10.1126/science.1132338.

    Article  CAS  PubMed  Google Scholar 

  50. Franke MF, Spiegelman D, Ezeamama A, Aboud S, Msamanga GI, Mehta S, et al. Malaria parasitemia and CD4 T cell count, viral load, and adverse HIV outcomes among HIV-infected pregnant women in Tanzania. Am J Trop Med Hyg. 2010;82(4):556–62. https://doi.org/10.4269/ajtmh.2010.09-0477.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Harms G, Feldmeier H. HIV infection and tropical parasitic diseases - deleterious interactions in both directions. Tropical Med Int Health. 2002;7(6):479–88.

    Article  Google Scholar 

  52. Whitworth J, Morgan D, Quigley M, Smith A, Mayanja B, Eotu H, et al. Effect of HIV-1 and increasing immunosuppression on malaria parasitaemia and clinical episodes in adults in rural Uganda: a cohort study. Lancet. 2000;356(9235):1051–6. https://doi.org/10.1016/S0140-6736(00)02727-6.

    Article  CAS  PubMed  Google Scholar 

  53. Grimwade K, French N, Mbatha DD, Zungu DD, Dedicoat M, Gilks CF. HIV infection as a cofactor for severe falciparum malaria in adults living in a region of unstable malaria transmission in South Africa. AIDS. 2004;18(3):547–54.

    Article  Google Scholar 

  54. Flateau C, Le Loup G, Pialoux G. Consequences of HIV infection on malaria and therapeutic implications: a systematic review. Lancet Infect Dis. 2011;11(7):541–56. https://doi.org/10.1016/S1473-3099(11)70031-7.

    Article  PubMed  Google Scholar 

  55. • Ottichilo RK, Polyak CS, Guyah B, Singa B, Nyataya J, Yuhas K, et al. Malaria Parasitemia and parasite density in antiretroviral-treated HIV-infected adults following discontinuation of cotrimoxazole prophylaxis. J Infect Dis. 2017;215(1):88–94. https://doi.org/10.1093/infdis/jiw495. This study investigated the effect of cotrimoxazole discontinuation and malaria incidence in HIV-infected individuals.

    Article  CAS  PubMed  Google Scholar 

  56. Bloland PB, Wirima JJ, Steketee RW, Chilima B, Hightower A, Breman JG. Maternal HIV infection and infant mortality in Malawi: evidence for increased mortality due to placental malaria infection. AIDS. 1995;9(7):721–6.

    Article  CAS  Google Scholar 

  57. Verhoeff FH, Brabin BJ, Hart CA, Chimsuku L, Kazembe P, Broadhead RL. Increased prevalence of malaria in HIV-infected pregnant women and its implications for malaria control. Tropical Med Int Health. 1999;4(1):5–12.

    Article  CAS  Google Scholar 

  58. Ayisi JG, van Eijk AM, ter Kuile FO, Kolczak MS, Otieno JA, Misore AO, et al. The effect of dual infection with HIV and malaria on pregnancy outcome in western Kenya. AIDS. 2003;17(4):585–94. https://doi.org/10.1097/01.aids.0000042977.95433.37.

    Article  PubMed  Google Scholar 

  59. Brahmbhatt H, Kigozi G, Wabwire-Mangen F, Serwadda D, Sewankambo N, Lutalo T, et al. The effects of placental malaria on mother-to-child HIV transmission in Rakai. Uganda AIDS. 2003;17(17):2539–41. https://doi.org/10.1097/01.aids.0000096868.36052.29.

    Article  PubMed  Google Scholar 

  60. Mwapasa V, Rogerson SJ, Molyneux ME, Abrams ET, Kamwendo DD, Lema VM, et al. The effect of Plasmodium falciparum malaria on peripheral and placental HIV-1 RNA concentrations in pregnant Malawian women. AIDS. 2004;18(7):1051–9.

    Article  Google Scholar 

  61. Eki-Udoko FE, Sadoh AE, Ibadin MO, Omoigberale AI. Prevalence of congenital malaria in newborns of mothers co-infected with HIV and malaria in Benin city. Infect Dis (Lond). 2017;49(8):609–16. https://doi.org/10.1080/23744235.2017.1312667.

    Article  CAS  Google Scholar 

  62. Guidelines on co-trimoxazole prophylaxis for HIV-related infections among children, adolescents and adults. Recommendatinos for a public health approach.: World Health Organization; 2006. www.who.int/hiv/pub/guidelines/ctx/en/. Accessed Dec 2019.

  63. Gonzalez R, Desai M, Macete E, Ouma P, Kakolwa MA, Abdulla S, et al. Intermittent preventive treatment of malaria in pregnancy with mefloquine in HIV-infected women receiving cotrimoxazole prophylaxis: a multicenter randomized placebo-controlled trial. PLoS Med. 2014;11(9):e1001735. https://doi.org/10.1371/journal.pmed.1001735.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Piola P, Nabasumba C, Turyakira E, Dhorda M, Lindegardh N, Nyehangane D, et al. Efficacy and safety of artemether-lumefantrine compared with quinine in pregnant women with uncomplicated Plasmodium falciparum malaria: an open-label, randomised, non-inferiority trial. Lancet Infect Dis. 2010;10(11):762–9. https://doi.org/10.1016/S1473-3099(10)70202-4.

    Article  CAS  PubMed  Google Scholar 

  65. Rijken MJ, McGready R, Boel ME, Barends M, Proux S, Pimanpanarak M, et al. Dihydroartemisinin-piperaquine rescue treatment of multidrug-resistant Plasmodium falciparum malaria in pregnancy: a preliminary report. Am J Trop Med Hyg. 2008;78(4):543–5.

    Article  CAS  Google Scholar 

  66. White NJ. Intermittent presumptive treatment for malaria. PLoS Med. 2005;2(1):e3. https://doi.org/10.1371/journal.pmed.0020003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Desai M, Gutman J, L’Lanziva A, Otieno K, Juma E, Kariuki S, et al. Intermittent screening and treatment or intermittent preventive treatment with dihydroartemisinin-piperaquine versus intermittent preventive treatment with sulfadoxine-pyrimethamine for the control of malaria during pregnancy in western Kenya: an open-label, three-group, randomised controlled superiority trial. Lancet. 2015;386(10012):2507–19. https://doi.org/10.1016/S0140-6736(15)00310-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. • Kakuru A, Jagannathan P, Muhindo MK, Natureeba P, Awori P, Nakalembe M, et al. Dihydroartemisinin-Piperaquine for the prevention of malaria in pregnancy. N Engl J Med. 2016;374(10):928–39. https://doi.org/10.1056/NEJMoa1509150. This study investigated the use of a promising treatment, dihydroartemisinin-piperaquine, for preventing malaria in pregnancy. This drug will likely be useful in pregnant women with HIV as well.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Molina R, Gradoni L, Alvar J. HIV and the transmission of Leishmania. Ann Trop Med Parasitol. 2003;97(Suppl 1):29–45. https://doi.org/10.1179/000349803225002516.

    Article  PubMed  Google Scholar 

  70. Hurissa Z, Gebre-Silassie S, Hailu W, Tefera T, Lalloo DG, Cuevas LE, et al. Clinical characteristics and treatment outcome of patients with visceral leishmaniasis and HIV co-infection in Northwest Ethiopia. Tropical Med Int Health. 2010;15(7):848–55. https://doi.org/10.1111/j.1365-3156.2010.02550.x.

    Article  Google Scholar 

  71. Diro E, Lynen L, Ritmeijer K, Boelaert M, Hailu A, van Griensven J. Visceral Leishmaniasis and HIV coinfection in East Africa. PLoS Negl Trop Dis. 2014;8(6):e2869. https://doi.org/10.1371/journal.pntd.0002869.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bernier R, Barbeau B, Tremblay MJ, Olivier M. The lipophosphoglycan of Leishmania donovani up-regulates HIV-1 transcription in T cells through the nuclear factor-kappaB elements. J Immunol. 1998;160(6):2881–8.

    CAS  PubMed  Google Scholar 

  73. Leishmania/HIV co-infection, south-western Europe, 1990-1998. Wkly Epidemiol Rec. 1999;74(44):365–75.

    Google Scholar 

  74. Alvar J, Canavate C, Gutierrez-Solar B, Jimenez M, Laguna F, Lopez-Velez R, et al. Leishmania and human immunodeficiency virus coinfection: the first 10 years. Clin Microbiol Rev. 1997;10(2):298–319.

    Article  CAS  Google Scholar 

  75. Lopez-Velez R, Perez-Molina JA, Guerrero A, Baquero F, Villarrubia J, Escribano L, et al. Clinicoepidemiologic characteristics, prognostic factors, and survival analysis of patients coinfected with human immunodeficiency virus and Leishmania in an area of Madrid, Spain. Am J Trop Med Hyg. 1998;58(4):436–43.

    Article  CAS  Google Scholar 

  76. ter Horst R, Tefera T, Assefa G, Ebrahim AZ, Davidson RN, Ritmeijer K. Field evaluation of rK39 test and direct agglutination test for diagnosis of visceral leishmaniasis in a population with high prevalence of human immunodeficiency virus in Ethiopia. Am J Trop Med Hyg. 2009;80(6):929–34.

    Article  Google Scholar 

  77. Pintado V, Martin-Rabadan P, Rivera ML, Moreno S, Bouza E. Visceral leishmaniasis in human immunodeficiency virus (HIV)-infected and non-HIV-infected patients. A comparative study. Medicine (Baltimore). 2001;80(1):54–73.

    Article  CAS  Google Scholar 

  78. Bossolasco S, Gaiera G, Olchini D, Gulletta M, Martello L, Bestetti A, et al. Real-time PCR assay for clinical management of human immunodeficiency virus-infected patients with visceral leishmaniasis. J Clin Microbiol. 2003;41(11):5080–4.

    Article  CAS  Google Scholar 

  79. Pandey N, Siripattanapipong S, Leelayoova S, Manomat J, Mungthin M, Tan-Ariya P, et al. Detection of Leishmania DNA in saliva among patients with HIV/AIDS in Trang Province, southern Thailand. Acta Trop. 2018;185:294–300. https://doi.org/10.1016/j.actatropica.2018.06.006.

    Article  CAS  PubMed  Google Scholar 

  80. Vogt F, Mengesha B, Asmamaw H, Mekonnen T, Fikre H, Takele Y, et al. Antigen detection in urine for noninvasive diagnosis and treatment monitoring of visceral leishmaniasis in human immunodeficiency virus coinfected patients: an exploratory analysis from Ethiopia. Am J Trop Med Hyg. 2018;99(4):957–66. https://doi.org/10.4269/ajtmh.18-0042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Laguna F, Videla S, Jimenez-Mejias ME, Sirera G, Torre-Cisneros J, Ribera E, et al. Amphotericin B lipid complex versus meglumine antimoniate in the treatment of visceral leishmaniasis in patients infected with HIV: a randomized pilot study. J Antimicrob Chemother. 2003;52(3):464–8. https://doi.org/10.1093/jac/dkg356.

    Article  CAS  PubMed  Google Scholar 

  82. Delgado J, Macias J, Pineda JA, Corzo JE, Gonzalez-Moreno MP, de la Rosa R, et al. High frequency of serious side effects from meglumine antimoniate given without an upper limit dose for the treatment of visceral leishmaniasis in human immunodeficiency virus type-1-infected patients. Am J Trop Med Hyg. 1999;61(5):766–9.

    Article  CAS  Google Scholar 

  83. Abongomera C, Diro E, de Lima Pereira A, Buyze J, Stille K, Ahmed F, et al. The initial effectiveness of liposomal amphotericin B (AmBisome) and miltefosine combination for treatment of visceral leishmaniasis in HIV co-infected patients in Ethiopia: a retrospective cohort study. PLoS Negl Trop Dis. 2018;12(5):e0006527. https://doi.org/10.1371/journal.pntd.0006527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tumbarello M, Tacconelli E, Bertagnolio S, Cauda R. Highly active antiretroviral therapy decreases the incidence of visceral leishmaniasis in HIV-infected individuals. AIDS. 2000;14(18):2948–9.

    Article  CAS  Google Scholar 

  85. Abongomera C, Diro E, Vogt F, Tsoumanis A, Mekonnen Z, Admassu H, et al. The risk and predictors of visceral leishmaniasis relapse in human immunodeficiency virus-coinfected patients in Ethiopia: a retrospective cohort study. Clin Infect Dis. 2017;65(10):1703–10. https://doi.org/10.1093/cid/cix607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lopez-Velez R. The impact of highly active antiretroviral therapy (HAART) on visceral leishmaniasis in Spanish patients who are co-infected with HIV. Ann Trop Med Parasitol. 2003;97(Suppl 1):143–7. https://doi.org/10.1179/000349803225002615.

    Article  CAS  PubMed  Google Scholar 

  87. Villanueva JL, Alarcon A, Bernabeu-Wittel M, Cordero E, Prados D, Regordan C, et al. Prospective evaluation and follow-up of European patients with visceral leishmaniasis and HIV-1 coinfection in the era of highly active antiretroviral therapy. Eur J Clin Microbiol Infect Dis. 2000;19(10):798–801.

    Article  CAS  Google Scholar 

  88. Lopez-Velez R, Videla S, Marquez M, Boix V, Jimenez-Mejias ME, Gorgolas M, et al. Amphotericin B lipid complex versus no treatment in the secondary prophylaxis of visceral leishmaniasis in HIV-infected patients. J Antimicrob Chemother. 2004;53(3):540–3. https://doi.org/10.1093/jac/dkh084.

    Article  CAS  PubMed  Google Scholar 

  89. Diro E, Ritmeijer K, Boelaert M, Alves F, Mohammed R, Abongomera C, et al. Long-term clinical outcomes in visceral leishmaniasis/human immunodeficiency virus-coinfected patients during and after pentamidine secondary prophylaxis in Ethiopia: a single-arm clinical trial. Clin Infect Dis. 2018;66(3):444–51. https://doi.org/10.1093/cid/cix807.

    Article  CAS  PubMed  Google Scholar 

  90. Noireau F, Brun-Vezinet F, Larouze B, Nzoukoudi MY, Gouteux JP. Absence of relationship between human immunodeficiency virus 1 and sleeping sickness. Trans R Soc Trop Med Hyg. 1987;81(6):1000.

    Article  CAS  Google Scholar 

  91. Louis JP, Moulia-Pelat JP, Jannin J, Asonganyi T, Hengy C, Trebucq A, et al. Absence of epidemiological inter-relations between HIV infection and African human trypanosomiasis in Central Africa. Trop Med Parasitol. 1991;42(2):155.

    CAS  PubMed  Google Scholar 

  92. Meda HA, Doua F, Laveissiere C, Miezan TW, Gaens E, Brattegaard K, et al. Human immunodeficiency virus infection and human African trypanosomiasis: a case-control study in cote d’Ivoire. Trans R Soc Trop Med Hyg. 1995;89(6):639–43.

    Article  CAS  Google Scholar 

  93. Pepin J, Ethier L, Kazadi C, Milord F, Ryder R. The impact of human immunodeficiency virus infection on the epidemiology and treatment of Trypanosoma brucei gambiense sleeping sickness in Nioki, Zaire. Am J Trop Med Hyg. 1992;47(2):133–40.

    Article  CAS  Google Scholar 

  94. Blum J, Nkunku S, Burri C. Clinical description of encephalopathic syndromes and risk factors for their occurrence and outcome during melarsoprol treatment of human African trypanosomiasis. Tropical Med Int Health. 2001;6(5):390–400.

    Article  CAS  Google Scholar 

  95. Perez-Ramirez L, Barnabe C, Sartori AM, Ferreira MS, Tolezano JE, Nunes EV, et al. Clinical analysis and parasite genetic diversity in human immunodeficiency virus/Chagas’ disease coinfections in Brazil. Am J Trop Med Hyg. 1999;61(2):198–206.

    Article  CAS  Google Scholar 

  96. Sartori AM, Neto JE, Nunes EV, Braz LM, Caiaffa-Filho HH, Oliveira Oda C Jr, et al. Trypanosoma cruzi parasitemia in chronic Chagas disease: comparison between human immunodeficiency virus (HIV)-positive and HIV-negative patients. J Infect Dis. 2002;186(6):872–5. https://doi.org/10.1086/342510.

    Article  PubMed  Google Scholar 

  97. Ferreira MS, Nishioka Sde A, Silvestre MT, Borges AS, Nunes-Araujo FR, Rocha A. Reactivation of Chagas’ disease in patients with AIDS: report of three new cases and review of the literature. Clin Infect Dis. 1997;25(6):1397–400.

    Article  CAS  Google Scholar 

  98. Pacheco RS, Ferreira MS, Machado MI, Brito CM, Pires MQ, Da-Cruz AM, et al. Chagas’ disease and HIV co-infection: genotypic characterization of the Trypanosoma cruzi strain. Mem Inst Oswaldo Cruz. 1998;93(2):165–9.

    Article  CAS  Google Scholar 

  99. Yasukawa K, Patel SM, Flash CA, Stager CE, Goodman JC, Woc-Colburn L. Trypanosoma cruzi meningoencephalitis in a patient with acquired immunodeficiency syndrome. Am J Trop Med Hyg. 2014;91(1):84–5. https://doi.org/10.4269/ajtmh.14-0058.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ferreira MS, Nishioka Sde A, Rocha A, Silva AM, Ferreira RG, Olivier W, et al. Acute fatal Trypanosoma cruzi meningoencephalitis in a human immunodeficiency virus-positive hemophiliac patient. Am J Trop Med Hyg. 1991;45(6):723–7.

    Article  CAS  Google Scholar 

  101. Cohen JE, Tsai EC, Ginsberg HJ, Godes J. Pseudotumoral chagasic meningoencephalitis as the first manifestation of acquired immunodeficiency syndrome. Surg Neurol. 1998;49(3):324–7.

    Article  CAS  Google Scholar 

  102. Di Lorenzo GA, Pagano MA, Taratuto AL, Garau ML, Meli FJ, Pomsztein MD. Chagasic granulomatous encephalitis in immunosuppressed patients. Computed tomography and magnetic resonance imaging findings. J Neuroimaging. 1996;6(2):94–7.

    Article  Google Scholar 

  103. Sartori AM, Caiaffa-Filho HH, Bezerra RC, do SGC, Lopes MH, Shikanai-Yasuda MA. Exacerbation of HIV viral load simultaneous with asymptomatic reactivation of chronic Chagas’ disease. Am J Trop Med Hyg. 2002;67(5):521–3.

    Article  Google Scholar 

  104. Raghunathan PL, Whitney EA, Asamoa K, Stienstra Y, Taylor TH Jr, Amofah GK, et al. Risk factors for Buruli ulcer disease (Mycobacterium ulcerans infection): results from a case-control study in Ghana. Clin Infect Dis. 2005;40(10):1445–53. https://doi.org/10.1086/429623.

    Article  PubMed  Google Scholar 

  105. Johnson RC, Nackers F, Glynn JR, de Biurrun Bakedano E, Zinsou C, Aguiar J, et al. Association of HIV infection and Mycobacterium ulcerans disease in Benin. AIDS. 2008;22(7):901–3. https://doi.org/10.1097/QAD.0b013e3282f7690a.

    Article  PubMed  Google Scholar 

  106. Tuffour J, Owusu-Mireku E, Ruf MT, Aboagye S, Kpeli G, Akuoku V, et al. Challenges associated with management of Buruli Ulcer/human immunodeficiency virus coinfection in a treatment center in Ghana: a case series study. Am J Trop Med Hyg. 2015;93(2):216–23. https://doi.org/10.4269/ajtmh.14-0571.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Christinet V, Comte E, Ciaffi L, Odermatt P, Serafini M, Antierens A, et al. Impact of human immunodeficiency virus on the severity of buruli ulcer disease: results of a retrospective study in Cameroon. Open Forum Infect Dis. 2014;1(1):ofu021. https://doi.org/10.1093/ofid/ofu021.

    Article  PubMed  PubMed Central  Google Scholar 

  108. O’Brien DP, Ford N, Vitoria M, Asiedu K, Calmy A, Du Cros P, et al. Generating evidence to improve the response to neglected diseases: how operational research in a Medecins Sans Frontieres Buruli Ulcer Treatment Programme Informed International Management Guidance. PLoS Negl Trop Dis. 2015;9(11):e0004075. https://doi.org/10.1371/journal.pntd.0004075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Vincent QB, Ardant MF, Marsollier L, Chauty A, Alcais A, Franco-Beninese Buruli Research G. HIV infection and Buruli ulcer in Africa. Lancet Infect Dis. 2014;14(9):796–7. https://doi.org/10.1016/S1473-3099(14)70882-5.

    Article  PubMed  Google Scholar 

  110. Deps P, Lockwood DN. Leprosy presenting as immune reconstitution inflammatory syndrome: proposed definitions and classification. Lepr Rev. 2010;81(1):59–68.

    PubMed  Google Scholar 

  111. Sarno EN, Illarramendi X, Nery JA, Sales AM, Gutierrez-Galhardo MC, Penna ML, et al. HIV-M. leprae interaction: can HAART modify the course of leprosy? Public Health Rep. 2008;123(2):206–12. https://doi.org/10.1177/003335490812300213.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Pires CA, Juca Neto FO, de Albuquerque NC, Macedo GM, Batista Kde N, Xavier MB. Leprosy reactions in patients coinfected with HIV: clinical aspects and outcomes in two comparative cohorts in the Amazon region, Brazil. PLoS Negl Trop Dis. 2015;9(6):e0003818. https://doi.org/10.1371/journal.pntd.0003818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Brites C, Alencar R, Gusmao R, Pedroso C, Netto EM, Pedral-Sampaio D, et al. Co-infection with HTLV-1 is associated with a shorter survival time for HIV-1-infected patients in Bahia, Brazil. AIDS. 2001;15(15):2053–5.

    Article  CAS  Google Scholar 

  114. Leung K, Nabel GJ. HTLV-1 transactivator induces interleukin-2 receptor expression through an NF-kappa B-like factor. Nature. 1988;333(6175):776–8. https://doi.org/10.1038/333776a0.

    Article  CAS  PubMed  Google Scholar 

  115. Schechter M, Harrison LH, Halsey NA, Trade G, Santino M, Moulton LH, et al. Coinfection with human T-cell lymphotropic virus type I and HIV in Brazil. Impact on markers of HIV disease progression. JAMA. 1994;271(5):353–7.

    Article  CAS  Google Scholar 

  116. Sobesky M, Couppie P, Pradinaud R, Godard MC, Alvarez F, Benoit B, et al. Coinfection with HIV and HTLV-I infection and survival in AIDS stage. French Guiana study. GECVIG (Clinical HIV Study Group in Guiana). Presse Med. 2000;29(8):413–6.

    CAS  PubMed  Google Scholar 

  117. Beilke MA, Theall KP, O’Brien M, Clayton JL, Benjamin SM, Winsor EL, et al. Clinical outcomes and disease progression among patients coinfected with HIV and human T lymphotropic virus types 1 and 2. Clin Infect Dis. 2004;39(2):256–63. https://doi.org/10.1086/422146.

    Article  PubMed  Google Scholar 

  118. Watt G, Kantipong P, Jongsakul K. Decrease in human immunodeficiency virus type 1 load during acute dengue fever. Clin Infect Dis. 2003;36(8):1067–9. https://doi.org/10.1086/374600.

    Article  PubMed  Google Scholar 

  119. Mendes Wda S, Branco Mdos R, Medeiros MN. Clinical case report: dengue hemorrhagic fever in a patient with acquired immunodeficiency syndrome. Am J Trop Med Hyg. 2006;74(5):905–7.

    Article  Google Scholar 

  120. Siong WC, Ching TH, Jong GC, Pang CS, Vernon LJ, Sin LY. Dengue infections in HIV patients. Southeast Asian J Trop Med Public Health. 2008;39(2):260–5.

    PubMed  Google Scholar 

  121. Gonzalez D, Limonta D, Bandera JF, Perez J, Kouri G, Guzman MG. Dual infection with dengue virus 3 and human immunodeficiency virus 1 in Havana, Cuba. J Infect Dev Ctries. 2009;3(4):318–20.

    PubMed  Google Scholar 

  122. • Torrentes-Carvalho A, Hottz ED, Marinho CF, da Silva JB, Pinto LM, Fialho LG, et al. Characterization of clinical and immunological features in patients coinfected with dengue virus and HIV. Clin Immunol. 2016;164:95–105. https://doi.org/10.1016/j.clim.2016.01.005. There is very little literature available describing dengue–HIV coinfection. This article is a thorough discussion of the known and suspected immunological interactions between these two viruses.

    Article  CAS  PubMed  Google Scholar 

  123. Pang J, Thein TL, Lye DC, Leo YS. Differential clinical outcome of dengue infection among patients with and without HIV infection: a matched case-control study. Am J Trop Med Hyg. 2015;92(6):1156–62. https://doi.org/10.4269/ajtmh.15-0031.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Joao EC, Gouvea MI, Teixeira ML, Mendes-Silva W, Esteves JS, Santos EM, et al. Zika virus infection associated with congenital birth defects in a HIV-infected pregnant woman. Pediatr Infect Dis J. 2017;36(5):500–1. https://doi.org/10.1097/INF.0000000000001482.

    Article  PubMed  Google Scholar 

  125. Who. Vaccines and vaccination against yellow fever: WHO position paper, June 2013--recommendations. Vaccine. 2015;33(1):76–7. https://doi.org/10.1016/j.vaccine.2014.05.040.

    Article  Google Scholar 

  126. Barte H, Horvath TH, Rutherford GW. Yellow fever vaccine for patients with HIV infection. Cochrane Database Syst Rev. 2014;2014(1):CD010929. https://doi.org/10.1002/14651858.CD010929.pub2.

    Article  Google Scholar 

  127. Veit O, Domingo C, Niedrig M, Staehelin C, Sonderegger B, Hequet D, et al. Long-term immune response to yellow fever vaccination in human immunodeficiency virus (HIV)-infected individuals depends on HIV RNA suppression status: implications for vaccination schedule. Clin Infect Dis. 2018;66(7):1099–108. https://doi.org/10.1093/cid/cix960.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Clark MD, PhD.

Ethics declarations

Conflict of Interest

Eva Clark declares that she has no conflict of interest. Jose A. Serpa declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on HIV Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, E., Serpa, J.A. Tropical Diseases in HIV. Curr Treat Options Infect Dis 11, 215–232 (2019). https://doi.org/10.1007/s40506-019-00194-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40506-019-00194-5

Keywords

Navigation