Skip to main content

Advertisement

Log in

Persistence of Tannerella forsythia and Fusobacterium nucleatum in Dental Plaque: a Strategic Alliance

  • Host Parasite Interactions in Periodontal Disease (C Genco and D Kinane, Section Editors)
  • Published:
Current Oral Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The Gram-negative oral pathogen Tannerella forsythia is implicated in the pathogenesis of periodontitis, an inflammatory disease characterized by progressive destruction of the tooth-supporting structures affecting over 700 million people worldwide. This review highlights the basis of why and how T. forsythia interacts with Fusobacterium nucleatum, a bacterium considered to be a bridge between the early and late colonizing bacteria of the dental plaque.

Recent Findings

The recent findings indicate that these two organisms have a strong mutualistic relationship that involves foraging by T. forsythia on F. nucleatum peptidoglycan and utilization of glucose, released by the hydrolytic activity of T. forsythia glucanase, as a nutrient by F. nucleatum. In addition, T. forsythia has the unique ability to generate a toxic and inflammogenic compound, methylglyoxal, from glucose. This compound can induce inflammation, leading to the degradation of periodontal tissues and release of host components as nutrients for bacteria to further exacerbate the disease.

Summary

In summary, this article will present our current understanding of mechanisms underpinning T. forsythia-F. nucleatum mutualism, and how this mutualism might impact periodontal disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sharma A, Sojar HT, Lee JY, Genco RJ. Expression of a functional Porphyromonas gingivalis fimbrillin polypeptide in Escherichia coli: purification, physicochemical and immunochemical characterization, and binding characteristics. Infect Immun. 1993;61(8):3570–3.

    Article  CAS  Google Scholar 

  2. Amano A, Sojar HT, Lee JY, Sharma A, Levine MJ, Genco RJ. Salivary receptors for recombinant fimbrillin of Porphyromonas gingivalis. Infect Immun. 1994;62(8):3372–80.

    Article  CAS  Google Scholar 

  3. Nagata H, Sharma A, Sojar HT, Amano A, Levine MJ, Genco RJ. Role of the carboxyl-terminal region of Porphyromonas gingivalis fimbrillin in binding to salivary proteins. Infect Immun. 1997;65(2):422–7.

    Article  CAS  Google Scholar 

  4. Sharma A, Honma K, Sojar HT, Hruby DE, Kuramitsu HK, Genco RJ. Expression of saliva-binding epitopes of the Porphyromonas gingivalis FimA protein on the surface of Streptococcus gordonii. Biochem Biophys Res Commun. 1999;258(1):222–6.

    Article  CAS  Google Scholar 

  5. Sharma A, Nagata H, Hamada N, Sojar HT, Hruby DE, Kuramitsu HK, et al. Expression of functional Porphyromonas gingivalis fimbrillin polypeptide domains on the surface of Streptococcus gordonii. Appl Environ Microbiol. 1996;62(11):3933–8.

    Article  CAS  Google Scholar 

  6. Sharma A, Honma K, Evans RT, Hruby DE, Genco RJ. Oral immunization with recombinant Streptococcus gordonii expressing Porphyromonas gingivalis FimA domains. Infect Immun. 2001;69(5):2928–34.

    Article  CAS  Google Scholar 

  7. Tanner AC, Haffer C, Bratthall GT, Visconti RA, Socransky SS. A study of the bacteria associated with advancing periodontitis in man. J Clin Periodontol. 1979;6(5):278–307.

    Article  CAS  Google Scholar 

  8. Tanner ACR, Listgarten MA, Ebersole JL, Strzempko MN. Bacteroides forsythus sp. nov., a slow growing, fusiform Bacteroides sp. from the human oral cavity. Int J Syst Bacteriol. 1986;36:213–21.

    Article  CAS  Google Scholar 

  9. • Wyss C. Dependence of proliferation of Bacteroides forsythus on exogenous N-acetylmuramic acid. Infect Immun. 1989;57(6):1757–9. This study showed that peptidoglycan amino sugar MurNAc is essential for the cultivation of T. forsythia.

    Article  CAS  Google Scholar 

  10. Sakamoto M, Suzuki M, Umeda M, Ishikawa L, Benno Y. Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol. 2002;52(Pt 3):841–9.

    CAS  PubMed  Google Scholar 

  11. Warinner C, Rodrigues JF, Vyas R, Trachsel C, Shved N, Grossmann J, et al. Pathogens and host immunity in the ancient human oral cavity. Nat Genet. 2014;46(4):336–44. https://doi.org/10.1038/ng.2906.

    Article  CAS  Google Scholar 

  12. Booij-Vrieling HE, van der Reijden WA, Houwers DJ, de Wit WE, Bosch-Tijhof CJ, Penning LC, et al. Comparison of periodontal pathogens between cats and their owners. Vet Microbiol. 2010;144:147–52.

    Article  CAS  Google Scholar 

  13. Oh C, Lee K, Cheong Y, Lee SW, Park SY, Song CS, et al. Comparison of the Oral microbiomes of canines and their owners using next-generation sequencing. PLoS One. 2015;10(7):e0131468. https://doi.org/10.1371/journal.pone.0131468.

    Article  Google Scholar 

  14. Beall CJ, Campbell AG, Dayeh DM, Griffen AL, Podar M, Leys EJ. Single cell genomics of uncultured, health-associated Tannerella BU063 (Oral Taxon 286) and comparison to the closely related pathogen Tannerella forsythia. PLoS One. 2014;9(2):e89398. https://doi.org/10.1371/journal.pone.0089398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beall CJ, Campbell AG, Griffen AL, Podar M, Leys EJ. Genomics of the uncultivated, periodontitis-associated bacterium Tannerella sp. BU045 (Oral Taxon 808). mSystems. 2018;3(3). https://doi.org/10.1128/mSystems.00018-18.

  16. Zuger J, Luthi-Schaller H, Gmur R. Uncultivated Tannerella BU045 and BU063 are slim segmented filamentous rods of high prevalence but low abundance in inflammatory disease-associated dental plaques. Microbiology. 2007;153(Pt 11):3809–16. https://doi.org/10.1099/mic.0.2007/010926-0.

    Article  CAS  PubMed  Google Scholar 

  17. Vartoukian SR, Moazzez RV, Paster BJ, Dewhirst FE, Wade WG. First cultivation of health-associated Tannerella sp. HOT-286 (BU063). J Dent Res. 2016;95:1308–13. https://doi.org/10.1177/0022034516651078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Camelo-Castillo A, Novoa L, Balsa-Castro C, Blanco J, Mira A, Tomas I. Relationship between periodontitis-associated subgingival microbiota and clinical inflammation by 16S pyrosequencing. J Clin Periodontol. 2015;42(12):1074–82. https://doi.org/10.1111/jcpe.12470.

    Article  CAS  PubMed  Google Scholar 

  19. Kumar PS, Griffen AL, Moeschberger ML, Leys EJ. Identification of candidate periodontal pathogens and beneficial species by quantitative 16S clonal analysis. J Clin Microbiol. 2005;43(8):3944–55.

    Article  CAS  Google Scholar 

  20. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr. Microbial complexes in subgingival plaque. J Clin Periodontol. 1998;25(2):134–44.

    Article  CAS  Google Scholar 

  21. Tanner AC, Izard J. Tannerella forsythia, a periodontal pathogen entering the genomic era. Periodontol 2000. 2006;42:88–113. https://doi.org/10.1111/j.1600-0757.2006.00184.x.

    Article  PubMed  Google Scholar 

  22. Myneni SR, Settem RP, Connell TD, Keegan AD, Gaffen SL, Sharma A. TLR2 signaling and Th2 responses drive Tannerella forsythia-induced periodontal bone loss. J Immunol. 2011;187(1):501–9. https://doi.org/10.4049/jimmunol.1100683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kesavalu L, Sathishkumar S, Bakthavatchalu V, Matthews C, Dawson D, Steffen M, et al. Rat model of polymicrobial infection, immunity, and alveolar bone resorption in periodontal disease. Infect Immun. 2007;75(4):1704–12. https://doi.org/10.1128/IAI.00733-06.

    Article  CAS  Google Scholar 

  24. Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS, Yang ZK, et al. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J. 2011;6:1176. https://doi.org/10.1038/ismej.2011.191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol. 2012;27:409–19. https://doi.org/10.1111/j.2041-1014.2012.00663.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sharma A. Virulence mechanisms of Tannerella forsythia. Periodontol 2000. 2010;54(1):106–16. https://doi.org/10.1111/j.1600-0757.2009.00332.x.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Honma K, Kuramitsu HK, Genco RJ, Sharma A. Development of a gene inactivation system for Bacteroides forsythus: construction and characterization of a BspA mutant. Infect Immun. 2001;69(7):4686–90.

    Article  CAS  Google Scholar 

  28. Sharma A. Genome functions of Tannerella forsythia in bacterial communities. In: Kolenbrander PE, editor. Oral Microbial Communities: Genome inquiry and interspecies communication. Washington, D. C.: American Society for Microbiology; 2011. p. 135.

    Google Scholar 

  29. Sharma A, Sojar HT, Glurich I, Honma K, Kuramitsu HK, Genco RJ. Cloning, expression, and sequencing of a cell surface antigen containing a leucine-rich repeat motif from Bacteroides forsythus ATCC 43037. Infect Immun. 1998;66(12):5703–10.

    Article  CAS  Google Scholar 

  30. Stafford G, Roy S, Honma K, Sharma A. Sialic acid, periodontal pathogens and Tannerella forsythia: stick around and enjoy the feast! Mol Oral Microbiol. 2012;27(1):11–22. https://doi.org/10.1111/j.2041-1014.2011.00630.x.

    Article  CAS  PubMed  Google Scholar 

  31. Settem RP, Honma K, Stafford GP, Sharma A. Protein-linked glycans in periodontal bacteria: prevalence and role at the immune interface. Front Microbiol. 2013;4:24146665 (open access). https://doi.org/10.3389/fmicb.2013.00310.

    Article  Google Scholar 

  32. Karim AY, Kulczycka M, Kantyka T, Dubin G, Jabaiah A, Daugherty PS, et al. A novel matrix metalloprotease-like enzyme (karilysin) of the periodontal pathogen Tannerella forsythia ATCC 43037. Biol Chem. 2010;391(1):105–17. https://doi.org/10.1515/BC.2010.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ksiazek M, Mizgalska D, Eick S, Thogersen IB, Enghild JJ, Potempa J. KLIKK proteases of Tannerella forsythia: putative virulence factors with a unique domain structure. Front Microbiol. 2015;6:312. https://doi.org/10.3389/fmicb.2015.00312.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yost S, Duran-Pinedo AE. The contribution of Tannerella forsythia dipeptidyl aminopeptidase IV in the breakdown of collagen. Mol Oral Microbiol. 2018;33(6):407–19. https://doi.org/10.1111/omi.12244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ribeiro AC, Matarazzo F, Faveri M, Zezell DM, Mayer MP. Exploring bacterial diversity of endodontic microbiota by cloning and sequencing 16S rRNA. J Endod. 2011;37(7):922–6. https://doi.org/10.1016/j.joen.2011.04.007.

    Article  PubMed  Google Scholar 

  36. Rocas IN, Alves FR, Santos AL, Rosado AS, Siqueira JF Jr. Apical root canal microbiota as determined by reverse-capture checkerboard analysis of cryogenically ground root samples from teeth with apical periodontitis. J Endod. 2010;36(10):1617–21. https://doi.org/10.1016/j.joen.2010.07.001.

    Article  PubMed  Google Scholar 

  37. Brennan RM, Genco RJ, Wilding GE, Hovey KM, Trevisan M, Wactawski-Wende J. Bacterial species in subgingival plaque and oral bone loss in postmenopausal women. J Periodontol. 2007;78(6):1051–61. https://doi.org/10.1902/jop.2007.060436.

    Article  PubMed  Google Scholar 

  38. Haffajee AD, Socransky SS. Relation of body mass index, periodontitis and Tannerella forsythia. J Clin Periodontolol. 2009;36(2):89–99.

    Article  Google Scholar 

  39. Africa CW, Nel J, Stemmet M. Anaerobes and bacterial vaginosis in pregnancy: virulence factors contributing to vaginal colonisation. Int J Environ Res Public Health. 2014;11(7):6979–7000. https://doi.org/10.3390/ijerph110706979.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Peters BA, Wu J, Pei Z, Yang L, Purdue MP, Freedman ND, et al. Oral microbiome composition reflects prospective risk for esophageal cancers. Cancer Res. 2017;77(23):6777–87. https://doi.org/10.1158/0008-5472.CAN-17-1296.

    Article  CAS  Google Scholar 

  41. Lee HR, Jun HK, Choi BK. Tannerella forsythia BspA increases the risk factors for atherosclerosis in ApoE(-/-) mice. Oral Dis. 2014;20(8):803–8. https://doi.org/10.1111/odi.12214.

    Article  CAS  PubMed  Google Scholar 

  42. Al-Ahmad A, Wunder A, Auschill TM, Follo M, Braun G, Hellwig E, et al. The in vivo dynamics of Streptococcus spp., Actinomyces naeslundii, Fusobacterium nucleatum and Veillonella spp. in dental plaque biofilm as analysed by five-colour multiplex fluorescence in situ hybridization. J Med Microbiol. 2007;56(Pt 5):681–7. https://doi.org/10.1099/jmm.0.47094-0.

    Article  CAS  PubMed  Google Scholar 

  43. Han YW. Fusobacterium nucleatum: a commensal-turned pathogen. Curr Opin Microbiol. 2015;23:141–7. https://doi.org/10.1016/j.mib.2014.11.013.

    Article  CAS  PubMed  Google Scholar 

  44. Rubinstein MR, Baik JE, Lagana SM, Han RP, Raab WJ, Sahoo D, et al. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/beta-catenin modulator Annexin A1. EMBO Rep. 2019;20(4). https://doi.org/10.15252/embr.201847638.

  45. Mima K, Nishihara R, Qian ZR, Cao Y, Sukawa Y, Nowak JA, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. 2016;65(12):1973–80. https://doi.org/10.1136/gutjnl-2015-310101.

    Article  Google Scholar 

  46. Sharma A, Inagaki S, Sigurdson W, Kuramitsu HK. Synergy between Tannerella forsythia and Fusobacterium nucleatum in biofilm formation. Oral Microbiol Immunol. 2005;20(1):39–42. https://doi.org/10.1111/j.1399-302X.2004.00175.x.

    Article  CAS  PubMed  Google Scholar 

  47. Zijnge V, van Leeuwen MB, Degener JE, Abbas F, Thurnheer T, Gmur R, et al. Oral biofilm architecture on natural teeth. PLoS One. 2010;5(2):e9321. https://doi.org/10.1371/journal.pone.0009321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takemoto T, Kurihara H, Dahlen G. Characterization of Bacteroides forsythus isolates. J Clin Microbiol. 1997;35(6):1378–81.

    Article  CAS  Google Scholar 

  49. Settem RP, El-Hassan AT, Honma K, Stafford GP, Sharma A. Fusobacterium nucleatum and Tannerella forsythia induce synergistic alveolar bone loss in a mouse periodontitis model. Infect Immun. 2012;80(7):2436–43. https://doi.org/10.1128/iai.06276-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Park JT. Murein synthesis. In: Neidhardt JL, Ingraham KB, Low B, Magasanik M, Schaechter UHE, editors. Escherichia coli and Salmonella typhimurium: cellular and molecular biology. Washington, D. C.: American Society for MIcrobiology; 1987. p. 663–7.

    Google Scholar 

  51. Vollmer W, Seligman SJ. Architecture of peptidoglycan: more data and more models. Trends Microbiol. 18(2):59–66. https://doi.org/10.1016/j.tim.2009.12.004.

    Article  CAS  Google Scholar 

  52. Ruscitto A, Sharma A. Peptidoglycan synthesis in Tannerella forsythia: scavenging is the modus operandi. Mol Oral Microbiol. 2018;33:125–32. https://doi.org/10.1111/omi.12210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ruscitto A, Hottmann I, Stafford GP, Schaffer C, Mayer C, Sharma A. Identification of a novel N-acetylmuramic acid transporter in Tannerella forsythia. J Bacteriol. 2016;198(22):3119–25. https://doi.org/10.1128/JB.00473-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ruscitto A, Honma K, Veeramachineni VM, Nishikawa K, Stafford GP, Sharma A. Regulation and molecular basis of environmental muropeptide uptake and utilization in fastidious oral anaerobe Tannerella forsythia. Front Microbiol. 2017;8:648. https://doi.org/10.3389/fmicb.2017.00648.

    Article  PubMed  PubMed Central  Google Scholar 

  55. •• Honma K, Ruscitto A, Sharma A. beta-Glucanase activity of the oral bacterium Tannerella forsythia contributes to the growth of a partner species, Fusobacterium nucleatum, in cobiofilms. Appl Environ Microbiol. 2018;84(1). https://doi.org/10.1128/AEM.01759-17. This study showed that T. forsythia contact with F. nucleatum leads to the induction of β-glucanse.

  56. Maiden MFJ, Pham C, Kashket S. Glucose toxicity effect and accumulation of methylgloxal by the periodontal pathogen Bacteroides forsythus. Anaerobe. 2004;10:27–32.

    Article  CAS  Google Scholar 

  57. • Settem RP, Honma K, Shankar M, Li M, LaMonte M, Xu D, et al. Tannerella forsythia produced methylglyoxal causes advanced glycation endproducts (AGEs) accumulation to trigger cytokine secretion in human monocytes. Mol Oral Microbiol. 2018;33:292–9. https://doi.org/10.1111/omi.12224. This study showed that T. forsythia promotes formation of AGEs via production of methylglyoxal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl). 2005;83(11):876–86. https://doi.org/10.1007/s00109-005-0688-7.

    Article  CAS  Google Scholar 

  59. Ramasamy R, Vannucci SJ, Yan SS, Herold K, Yan SF, Schmidt AM. Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology. 2005;15(7):16R–28R. https://doi.org/10.1093/glycob/cwi053.

    Article  CAS  PubMed  Google Scholar 

  60. Bertsche U, Mayer C, Gotz F, Gust AA. Peptidoglycan perception--sensing bacteria by their common envelope structure. Int J Med Microbiol. 2015;305(2):217–23. https://doi.org/10.1016/j.ijmm.2014.12.019.

    Article  CAS  PubMed  Google Scholar 

  61. Boneca IG. The role of peptidoglycan in pathogenesis. Curr Opin Microbiol. 2005;8(1):46–53. https://doi.org/10.1016/j.mib.2004.12.008.

    Article  CAS  PubMed  Google Scholar 

  62. McDonald C, Inohara N, Nunez G. Peptidoglycan signaling in innate immunity and inflammatory disease. J Biol Chem. 2005;280(21):20177–80. https://doi.org/10.1074/jbc.R500001200.

    Article  CAS  PubMed  Google Scholar 

  63. Stewart-Tull DE. The immunological activities of bacterial peptidoglycans. Annu Rev Microbiol. 1980;34:311–40. https://doi.org/10.1146/annurev.mi.34.100180.001523.

    Article  CAS  PubMed  Google Scholar 

  64. Caruso R, Warner N, Inohara N, Nunez G. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity. 2014;41(6):898–908. https://doi.org/10.1016/j.immuni.2014.12.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nigro G, Fazio LL, Martino MC, Rossi G, Tattoli I, Liparoti V, et al. Muramylpeptide shedding modulates cell sensing of Shigella flexneri. Cell Microbiol. 2008;10(3):682–95. https://doi.org/10.1111/j.1462-5822.2007.01075.x.

    Article  CAS  Google Scholar 

  66. Fritz JH, Ferrero RL, Philpott DJ, Girardin SE. Nod-like proteins in immunity, inflammation and disease. Nat Immunol. 2006;7(12):1250–7. https://doi.org/10.1038/ni1412.

    Article  CAS  PubMed  Google Scholar 

  67. Radford-Smith G, Pandeya N. Associations between NOD2/CARD15 genotype and phenotype in Crohn’s disease--are we there yet? World J Gastroenterol. 2006;12(44):7097–103.

    Article  Google Scholar 

  68. Kim TH, Payne U, Zhang X, Iwanaga Y, Davey MP, Rosenbaum JT, et al. Altered host:pathogen interactions conferred by the Blau syndrome mutation of NOD2. Rheumatol Int. 2007;27(3):257–62. https://doi.org/10.1007/s00296-006-0250-0.

    Article  Google Scholar 

  69. Chamaillard M, Philpott D, Girardin SE, Zouali H, Lesage S, Chareyre F, et al. Gene-environment interaction modulated by allelic heterogeneity in inflammatory diseases. Proc Natl Acad Sci U S A. 2003;100(6):3455–60. https://doi.org/10.1073/pnas.0530276100.

    Article  CAS  Google Scholar 

  70. Chamaillard M, Hashimoto M, Horie Y, Masumoto J, Qiu S, Saab L, et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol. 2003;4(7):702–7. https://doi.org/10.1038/ni945.

    Article  CAS  Google Scholar 

  71. Girardin SE, Travassos LH, Herve M, Blanot D, Boneca IG, Philpott DJ, et al. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J Biol Chem. 2003;278(43):41702–8. https://doi.org/10.1074/jbc.M307198200.

    Article  CAS  PubMed  Google Scholar 

  72. Kashket S, Maiden MF, Haffajee AD, Kashket ER. Accumulation of methylglyoxal in the gingival crevicular fluid of chronic periodontitis patients. J Clin Periodontol. 2003;30(4):364–7.

    Article  CAS  Google Scholar 

  73. Retamal IN, Hernandez R, Gonzalez-Rivas C, Caceres M, Arancibia R, Romero A, et al. Methylglyoxal and methylglyoxal-modified collagen as inducers of cellular injury in gingival connective tissue cells. J Periodontal Res. 2016;51(6):812–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank Dr. Karen Falkner for the critical reading of this article and her helpful suggestions.

Funding

The work cited from the author’s laboratory was supported by grants (DE014749 and DE022870) from the NIDCR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashu Sharma.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any primary research studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Host Parasite Interactions in Periodontal Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A. Persistence of Tannerella forsythia and Fusobacterium nucleatum in Dental Plaque: a Strategic Alliance. Curr Oral Health Rep 7, 22–28 (2020). https://doi.org/10.1007/s40496-020-00254-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40496-020-00254-6

Keywords

Navigation