Skip to main content
Log in

Implications of Genetic Factors and Modifiers in Autism Spectrum Disorders: a Systematic Review

  • Review Paper
  • Published:
Review Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition. Genetic, environmental, and epigenetic variables are all likely to have a role in the occurrence of ASD. This systematic review was done to determine the implications of genetic factors and modifiers in ASD. Our results show that nearly all human chromosomes have one or more genes susceptible to autism including X and Y chromosomes. In majority of the studies, different genes like MTHFR, A1298C, KDM5B, AIM2, AMPD1-NRAS, TRIM33, and TRIM33-BCAS2 located on chromosome number 1 were found to have high association with ASD. It is concluded that genes on approximately all human chromosomes have association with the risk of ASD. Given the possible involvement of epigenetic processes in the development of autism and the ability of environmental variables to change gene expression, it seems essential to investigate a variety of factors, particularly interaction between gene and environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abedinzadeh, M., Zare-Shehneh, M., Neamatzadeh, H., Abedinzadeh, M., & Karami, H. (2015). Association between MTHFR C677T polymorphism and risk of prostate cancer: Evidence from 22 studies with 10,832 cases and 11,993 controls. Asian Pacific Journal of Cancer Prevention, 16(11), 4525–4530.

    PubMed  Google Scholar 

  • Abrahams, B. S., & Geschwind, D. H. (2008). Advances in autism genetics: On the threshold of a new neurobiology. Nature Reviews Genetics, 9(5), 341–355.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anitha, A., Nakamura, K., Thanseem, I., Yamada, K., Iwayama, Y., Toyota, T., et al. (2012). Brain region-specific altered expression and association of mitochondria-related genes in autism. Molecular Autism, 3(1), 1–12.

    Google Scholar 

  • Aoki, Y., & Cortese, S. (2016). Mitochondrial aspartate/glutamate carrier SLC25A12 and autism spectrum disorder: A meta-analysis. Molecular Neurobiology, 53(3), 1579–1588.

    CAS  PubMed  Google Scholar 

  • Barbato, J. C., Catanescu, O., Murray, K., DiBello, P. M., & Jacobsen, D. W. (2007). Targeting of metallothionein by L-homocysteine: A novel mechanism for disruption of zinc and redox homeostasis. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(1), 49–54.

    CAS  PubMed  Google Scholar 

  • Boccuto, L., Chen, C.-F., Pittman, A. R., Skinner, C. D., McCartney, H. J., Jones, K., et al. (2013). Decreased tryptophan metabolism in patients with autism spectrum disorders. Molecular Autism, 4(1), 1–10.

    Google Scholar 

  • Bourgeron, T. (2015). From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nature Reviews Neuroscience, 16(9), 551–563.

    CAS  PubMed  Google Scholar 

  • Brooks, S. P., Coccia, M., Tang, H. R., Kanuga, N., Machesky, L. M., Bailly, M., et al. (2010). The Nance-Horan syndrome protein encodes a functional WAVE homology domain (WHD) and is important for co-ordinating actin remodelling and maintaining cell morphology. Human Molecular Genetics, 19(12), 2421–2432.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Canali, G., Garcia, M., Hivert, B., Pinatel, D., Goullancourt, A., Oguievetskaia, K., et al. (2018). Genetic variants in autism-related CNTNAP2 impair axonal growth of cortical neurons. Human Molecular Genetics, 27(11), 1941–1954.

    CAS  PubMed  Google Scholar 

  • Cannell, J. J., & Grant, W. B. (2013). What is the role of vitamin D in autism? Dermato-Endocrinology, 5(1), 199–204.

    PubMed  PubMed Central  Google Scholar 

  • Cataldo, I., Azhari, A., & Esposito, G. (2018). A review of oxytocin and arginine-vasopressin receptors and their modulation of autism spectrum disorder. Frontiers in Molecular Neuroscience, 11, 27.

    PubMed  PubMed Central  Google Scholar 

  • Chen, C.-H., Huang, C.-C., Cheng, M.-C., Chiu, Y.-N., Tsai, W.-C., Wu, Y.-Y., et al. (2014). Genetic analysis of GABRB3 as a candidate gene of autism spectrum disorders. Molecular Autism, 5, 36–36. https://doi.org/10.1186/2040-2392-5-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciernia, A. V., & LaSalle, J. (2016). The landscape of DNA methylation amid a perfect storm of autism aetiologies. Nature Reviews Neuroscience, 17(7), 411–423.

    CAS  PubMed Central  Google Scholar 

  • Degenhardt, F., Niklowitz, P., Szymczak, S., Jacobs, G., Lieb, W., Menke, T., et al. (2016). Genome-wide association study of serum coenzyme Q10 levels identifies susceptibility loci linked to neuronal diseases. Human Molecular Genetics, 25(13), 2881–2891.

    CAS  PubMed  Google Scholar 

  • Devlin, B., & Scherer, S. W. (2012). Genetic architecture in autism spectrum disorder. Current Opinion in Genetics & Development, 22(3), 229–237.

    CAS  Google Scholar 

  • Dey, B. K., Stalker, L., Schnerch, A., Bhatia, M., Taylor-Papidimitriou, J., & Wynder, C. (2008). The histone demethylase KDM5b/JARID1b plays a role in cell fate decisions by blocking terminal differentiation. Molecular and Cellular Biology, 28(17), 5312–5327.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emond, A., Emmett, P., Steer, C., & Golding, J. (2010). Feeding symptoms, dietary patterns, and growth in young children with autism spectrum disorders. Pediatrics, 126(2), e337–e342.

    PubMed  Google Scholar 

  • Eshraghi, A. A., Liu, G., Kay, S.-I.S., Eshraghi, R. S., Mittal, J., Moshiree, B., et al. (2018). Epigenetics and autism spectrum disorder: Is there a correlation? Frontiers in Cellular Neuroscience, 12, 78.

    PubMed  PubMed Central  Google Scholar 

  • Freitag, C. M. (2007). The genetics of autistic disorders and its clinical relevance: A review of the literature. Molecular Psychiatry, 12(1), 2–22.

    CAS  PubMed  Google Scholar 

  • Freitag, C. M., Staal, W., Klauck, S. M., Duketis, E., & Waltes, R. (2010). Genetics of autistic disorders: Review and clinical implications. European Child & Adolescent Psychiatry, 19(3), 169–178.

    Google Scholar 

  • Gardener, H., Spiegelman, D., & Buka, S. L. (2011). Perinatal and neonatal risk factors for autism: A comprehensive meta-analysis. Pediatrics, 128(2), 344–355.

    PubMed  PubMed Central  Google Scholar 

  • Gaugler, T., Klei, L., Sanders, S. J., Bodea, C. A., Goldberg, A. P., Lee, A. B., et al. (2014). Most genetic risk for autism resides with common variation. Nature Genetics, 46(8), 881–885.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerges, P., Bitar, T., Laumonnier, F., Marouillat, S., Nemer, G., Andres, C. R., et al. (2022). Identification of novel gene variants for autism spectrum disorders in the Lebanese population using whole-exome sequencing. Genes, 13(2), 186.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goes, F. S., Pirooznia, M., Parla, J. S., Kramer, M., Ghiban, E., Mavruk, S., et al. (2016). Exome sequencing of familial bipolar disorder. JAMA Psychiatry, 73(6), 590–597.

    PubMed  PubMed Central  Google Scholar 

  • Grabrucker, A. M., Schmeisser, M. J., Schoen, M., & Boeckers, T. M. (2011). Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies. Trends in Cell Biology, 21(10), 594–603.

    CAS  PubMed  Google Scholar 

  • Grayson, D. R., & Guidotti, A. (2016). Merging data from genetic and epigenetic approaches to better understand autistic spectrum disorder. Epigenomics, 8(1), 85–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, W., Samuels, J., Wang, Y., Cao, H., Ritter, M., Nestadt, P., et al. (2017). Polygenic risk score and heritability estimates reveals a genetic relationship between ASD and OCD. European Neuropsychopharmacology, 27(7), 657–666.

    CAS  PubMed  Google Scholar 

  • Herndon, A. C., DiGuiseppi, C., Johnson, S. L., Leiferman, J., & Reynolds, A. (2009). Does nutritional intake differ between children with autism spectrum disorders and children with typical development? Journal of Autism and Developmental Disorders, 39(2), 212–222.

    PubMed  Google Scholar 

  • Hicks, S. D., & Middleton, F. A. (2016). A comparative review of microRNA expression patterns in autism spectrum disorder. Frontiers in Psychiatry, 7, 176.

    PubMed  PubMed Central  Google Scholar 

  • Huo, Y., Khatri, N., Hou, Q., Gilbert, J., Wang, G., & Man, H. Y. (2015). The deubiquitinating enzyme USP 46 regulates AMPA receptor ubiquitination and trafficking. Journal of Neurochemistry, 134(6), 1067–1080.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Husson, T., Lecoquierre, F., Cassinari, K., Charbonnier, C., Quenez, O., Goldenberg, A., et al. (2020). Rare genetic susceptibility variants assessment in autism spectrum disorder: Detection rate and practical use. Translational Psychiatry, 10(1), 1–8.

    Google Scholar 

  • Ismail, S., Senna, A. A., Behiry, E. G., Ashaat, E. A., Zaki, M. S., Ashaat, N. A., et al. (2019). Study of C677T variant of methylene tetrahydrofolate reductase gene in autistic spectrum disorder Egyptian children. American Journal of Medical Genetics Part b: Neuropsychiatric Genetics, 180(5), 305–309.

    CAS  PubMed  Google Scholar 

  • James, S. J., Cutler, P., Melnyk, S., Jernigan, S., Janak, L., Gaylor, D. W., et al. (2004). Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. The American Journal of Clinical Nutrition, 80(6), 1611–1617.

    CAS  PubMed  Google Scholar 

  • Khalid, M., Raza, H., Driessen, T. M., Lee, P. J., Tejwani, L., Sami, A., et al. (2020). Genetic risk of autism spectrum disorder in a Pakistani population. Genes, 11(10), 1206.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, Y. S., & Leventhal, B. L. (2015). Genetic epidemiology and insights into interactive genetic and environmental effects in autism spectrum disorders. Biological Psychiatry, 77(1), 66–74.

    CAS  PubMed  Google Scholar 

  • Krumm, N., O’Roak, B. J., Shendure, J., & Eichler, E. E. (2014). A de novo convergence of autism genetics and molecular neuroscience. Trends in Neurosciences, 37(2), 95–105.

    CAS  PubMed  Google Scholar 

  • Kumsta, R., & Heinrichs, M. (2013). Oxytocin, stress and social behavior: Neurogenetics of the human oxytocin system. Current Opinion in Neurobiology, 23(1), 11–16.

    CAS  PubMed  Google Scholar 

  • Lammert, D. B., & Howell, B. W. (2016). RELN mutations in autism spectrum disorder. Frontiers in Cellular Neuroscience, 10, 84.

    PubMed  PubMed Central  Google Scholar 

  • Landgraf, R., & Neumann, I. D. (2004). Vasopressin and oxytocin release within the brain: A dynamic concept of multiple and variable modes of neuropeptide communication. Frontiers in Neuroendocrinology, 25(3–4), 150–176.

    CAS  PubMed  Google Scholar 

  • Leblond, C. S., Nava, C., Polge, A., Gauthier, J., Huguet, G., Lumbroso, S., et al. (2014). Meta-analysis of SHANK mutations in autism spectrum disorders: A gradient of severity in cognitive impairments. PLoS Genetics, 10(9), e1004580.

    PubMed  PubMed Central  Google Scholar 

  • Li, Y., Qiu, S., Shi, J., Guo, Y., Li, Z., Cheng, Y., et al. (2020). Association between MTHFR C677T/A1298C and susceptibility to autism spectrum disorders: A meta-analysis. BMC Pediatrics, 20(1), 449–449. https://doi.org/10.1186/s12887-020-02330-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, X., Solehdin, F., Cohen, I. L., Gonzalez, M. G., Jenkins, E. C., Lewis, M. S., et al. (2011). Population-and family-based studies associate the MTHFR gene with idiopathic autism in simplex families. Journal of Autism and Developmental Disorders, 41(7), 938–944.

    PubMed  Google Scholar 

  • Liu, J., Yang, A., Zhang, Q., Yang, G., Yang, W., Lei, H., et al. (2015). Association between genetic variants in SLC25A12 and risk of autism spectrum disorders: An integrated meta-analysis. American Journal of Medical Genetics Part b: Neuropsychiatric Genetics, 168(4), 236–246.

    CAS  Google Scholar 

  • Main, P. A., Angley, M. T., Thomas, P., O’Doherty, C. E., & Fenech, M. (2010). Folate and methionine metabolism in autism: A systematic review. The American Journal of Clinical Nutrition, 91(6), 1598–1620.

    CAS  PubMed  Google Scholar 

  • Marí-Bauset, S., Llopis-González, A., Zazpe-García, I., Marí-Sanchis, A., & Morales-Suárez-Varela, M. (2015). Nutritional status of children with autism spectrum disorders (ASDs): A case–control study. Journal of Autism and Developmental Disorders, 45(1), 203–212.

    PubMed  Google Scholar 

  • Mazahery, H., Camargo, C. A., Conlon, C., Beck, K. L., Kruger, M. C., & Von Hurst, P. R. (2016). Vitamin D and autism spectrum disorder: A literature review. Nutrients, 8(4), 236.

    PubMed  PubMed Central  Google Scholar 

  • Mendelsohn, N. J., & Schaefer, G. B. Genetic evaluation of autism. In Seminars in Pediatric Neurology, 2008 (Vol. 15, pp. 27–31, Vol. 1): Elsevier

  • Miller, K. A., Gordon, C. T., Welfare, M. F., Caruana, G., Bertram, J. F., Bateman, J. F., et al. (2013). bfb, a novel ENU-induced blebs mutant resulting from a missense mutation in Fras1. PLoS ONE, 8(10), e76342.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Modabbernia, A., Velthorst, E., & Reichenberg, A. (2017). Environmental risk factors for autism: An evidence-based review of systematic reviews and meta-analyses. Molecular Autism, 8(1), 1–16.

    Google Scholar 

  • Nordenbæk, C., Jørgensen, M., Kyvik, K. O., & Bilenberg, N. (2014). A Danish population-based twin study on autism spectrum disorders. European Child & Adolescent Psychiatry, 23(1), 35–43.

    Google Scholar 

  • Noroozi, R., Taheri, M., Ghafouri-Fard, S., Bidel, Z., Omrani, M. D., Moghaddam, A. S., et al. (2018). Meta-analysis of gabrb3 gene polymorphisms and susceptibility to autism spectrum disorder. Journal of Molecular Neuroscience, 65(4), 432–437.

    CAS  PubMed  Google Scholar 

  • Nunokawa, A., Watanabe, Y., Kaneko, N., Sugai, T., Yazaki, S., Arinami, T., et al. (2010). The dopamine D3 receptor (DRD3) gene and risk of schizophrenia: Case–control studies and an updated meta-analysis. Schizophrenia Research, 116(1), 61–67.

    PubMed  Google Scholar 

  • Oikonomakis, V., Kosma, K., Mitrakos, A., Sofocleous, C., Pervanidou, P., Syrmou, A., et al. (2016). Recurrent copy number variations as risk factors for autism spectrum disorders: Analysis of the clinical implications. Clinical Genetics, 89(6), 708–718.

    CAS  PubMed  Google Scholar 

  • Paşca, S. P., Dronca, E., Kaucsár, T., Crǎciun, E. C., Endreffy, E., Ferencz, B. K., et al. (2009). One carbon metabolism disturbances and the C677T MTHFR gene polymorphism in children with autism spectrum disorders. Journal of Cellular and Molecular Medicine, 13(10), 4229–4238.

    PubMed  Google Scholar 

  • Persico, A. M., & Napolioni, V. (2013). Autism genetics. Behavioural Brain Research, 251, 95–112.

    PubMed  Google Scholar 

  • Proenca, C. C., Gao, K. P., Shmelkov, S. V., Rafii, S., & Lee, F. S. (2011). Slitrks as emerging candidate genes involved in neuropsychiatric disorders. Trends in Neurosciences, 34(3), 143–153.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pu, D., Shen, Y., & Wu, J. (2013). Association between MTHFR gene polymorphisms and the risk of autism spectrum disorders: A meta-analysis. Autism Research, 6(5), 384–392.

    PubMed  Google Scholar 

  • Rai, V. (2016). Association of methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism with autism: Evidence of genetic susceptibility. Metabolic Brain Disease, 31(4), 727–735.

    CAS  PubMed  Google Scholar 

  • Razi, B., Imani, D., Makoui, M. H., Rezaei, R., & Aslani, S. (2020). Association between MTHFR gene polymorphism and susceptibility to autism spectrum disorders: Systematic review and meta-analysis. Research in Autism Spectrum Disorders, 70, 101473.

    Google Scholar 

  • Ronald, A., & Hoekstra, R. A. (2011). Autism spectrum disorders and autistic traits: A decade of new twin studies. American Journal of Medical Genetics Part b: Neuropsychiatric Genetics, 156(3), 255–274.

    Google Scholar 

  • Rosenberg, S. S., & Spitzer, N. C. (2011). Calcium signaling in neuronal development. Cold Spring Harbor Perspectives in Biology, 3(10), a004259.

    PubMed  PubMed Central  Google Scholar 

  • Rosenberg, R. E., Law, J. K., Yenokyan, G., McGready, J., Kaufmann, W. E., & Law, P. A. (2009). Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Archives of Pediatrics & Adolescent Medicine, 163(10), 907–914.

    Google Scholar 

  • Sadeghiyeh, T., Dastgheib, S. A., Mirzaee-Khoramabadi, K., Morovati-Sharifabad, M., Akbarian-Bafghi, M. J., Poursharif, Z., et al. (2019). Association of MTHFR 677C> T and 1298A> C polymorphisms with susceptibility to autism: A systematic review and meta-analysis. Asian Journal of Psychiatry, 46, 54–61.

    PubMed  Google Scholar 

  • Sanders, S. J., He, X., Willsey, A. J., Ercan-Sencicek, A. G., Samocha, K. E., Cicek, A. E., et al. (2015). Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron, 87(6), 1215–1233.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sandin, S., Lichtenstein, P., Kuja-Halkola, R., Larsson, H., Hultman, C. M., & Reichenberg, A. (2014). The Familial Risk of Autism. Jama, 311(17), 1770–1777.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sandin, S., Lichtenstein, P., Kuja-Halkola, R., Hultman, C., Larsson, H., & Reichenberg, A. (2017). The heritability of autism spectrum disorder. JAMA, 318(12), 1182–1184.

    PubMed  PubMed Central  Google Scholar 

  • Shaik Mohammad, N., Sai Shruti, P., Bharathi, V., Krishna Prasad, C., Hussain, T., Alrokayan, S. A., et al. (2016). Clinical utility of folate pathway genetic polymorphisms in the diagnosis of autism spectrum disorders. Psychiatric Genetics, 26(6), 281–286.

    CAS  PubMed  Google Scholar 

  • Suh, J. H., Walsh, W. J., McGinnis, W. R., Lewis, A., & Ames, B. N. (2008). Altered sulfur amino acid metabolism in immune cells of children diagnosed with autism. American Journal of Biochemistry and Biotechnology, 4(2), 105–113.

    CAS  Google Scholar 

  • Sullivan, P. F., Agrawal, A., Bulik, C. M., Andreassen, O. A., Børglum, A. D., Breen, G., et al. (2018). Psychiatric genomics: An update and an agenda. American Journal of Psychiatry, 175(1), 15–27.

    PubMed  Google Scholar 

  • Szatmari, P., Liu, X. Q., Goldberg, J., Zwaigenbaum, L., Paterson, A. D., Woodbury-Smith, M., et al. (2012). Sex differences in repetitive stereotyped behaviors in autism: Implications for genetic liability. American Journal of Medical Genetics Part b: Neuropsychiatric Genetics, 159(1), 5–12.

    Google Scholar 

  • Tordjman, S. (2012). Nonsyndromic autism: On the waiting list of syndromic autism? Neuropsychiatrie De L’enfance Et De L’adolescence, 5(60), S11.

    Google Scholar 

  • Torrico, B., Fernàndez-Castillo, N., Hervás, A., Milà, M., Salgado, M., Rueda, I., et al. (2015). Contribution of common and rare variants of the PTCHD1 gene to autism spectrum disorders and intellectual disability. European Journal of Human Genetics, 23(12), 1694–1701.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tu, M.-C., Huang, C.-W., Chen, N.-C., Chang, W.-N., Lui, C.-C., Chen, C.-F., et al. (2010). Hyperhomocysteinemia in Alzheimer dementia patients and cognitive decline after 6 months follow-up period. Acta Neurologica Taiwanica, 19(3), 168–177.

    PubMed  Google Scholar 

  • Vojinovic, D., Brison, N., Ahmad, S., Noens, I., Pappa, I., Karssen, L. C., et al. (2017). Variants in TTC25 affect autistic trait in patients with autism spectrum disorder and general population. European Journal of Human Genetics, 25(8), 982–987.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waltes, R., Duketis, E., Knapp, M., Anney, R. J., Huguet, G., Schlitt, S., et al. (2014). Common variants in genes of the postsynaptic FMRP signalling pathway are risk factors for autism spectrum disorders. Human Genetics, 133(6), 781–792.

    CAS  PubMed  Google Scholar 

  • Wang, Z.-J., Rein, B., Zhong, P., Williams, J., Cao, Q., Yang, F., et al. (2021). Autism risk gene KMT5B deficiency in prefrontal cortex induces synaptic dysfunction and social deficits via alterations of DNA repair and gene transcription. Neuropsychopharmacology, 46(9), 1617–1626. https://doi.org/10.1038/s41386-021-01029-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warrier, V., Chee, V., Smith, P., Chakrabarti, B., & Baron-Cohen, S. (2015). A comprehensive meta-analysis of common genetic variants in autism spectrum conditions. Molecular Autism, 6(1), 1–11.

    Google Scholar 

  • Wei, H., Zhu, Y., Wang, T., Zhang, X., Zhang, K., & Zhang, Z. (2021). Genetic risk factors for autism-spectrum disorders: A systematic review based on systematic reviews and meta-analysis. Journal of Neural Transmission, 128(6), 717–734.

    PubMed  Google Scholar 

  • Weiner, D., Wigdor, E., Ripke, S., Walters, R., Kosmicki, J., Grove, J., et al. (2017). iPSYCH-Broad Autism Group; Psychiatric Genomics Consortium Autism Group. Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders. Nat Genet, 49(7), 978–985.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss, L. A., & Arking, D. E. (2009). A genome-wide linkage and association scan reveals novel loci for autism. Nature, 461(7265), 802–808.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, K., Guo, H., Hu, Z., Xun, G., Zuo, L., Peng, Y., et al. (2014). Common genetic variants on 1p13.2 associate with risk of autism. Molecular psychiatry, 19(11), 1212–1219.

    CAS  PubMed  Google Scholar 

  • Yang, H., & Wu, X. (2020). The correlation between vitamin D receptor (VDR) gene polymorphisms and autism: A meta-analysis. Journal of Molecular Neuroscience, 70(2), 260–268.

    CAS  PubMed  Google Scholar 

  • Yang, W., Liu, J., Zheng, F., Jia, M., Zhao, L., Lu, T., et al. (2013). The evidence for association of ATP2B2 polymorphisms with autism in Chinese Han population. PLoS ONE, 8(4), e61021.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Yang, P. Y., Menga, Y. J., Li, T., & Huang, Y. (2017). Associations of endocrine stress-related gene polymorphisms with risk of autism spectrum disorders: evidence from an integrated meta-analysis. Autism Research, 10(11), 1722–1736.

    PubMed  Google Scholar 

  • Yuen, R. K., Merico, D., Bookman, M., Howe, J. L., Thiruvahindrapuram, B., Patel, R. V., et al. (2017). Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nature Neuroscience, 20(4), 602–611.

    CAS  PubMed Central  Google Scholar 

  • Zimmer, M. H., Hart, L. C., Manning-Courtney, P., Murray, D. S., Bing, N. M., & Summer, S. (2012). Food variety as a predictor of nutritional status among children with autism. Journal of Autism and Developmental Disorders, 42(4), 549–556.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study conception and design. Material preparation and data collection and analysis were performed by Dr. Shemaila Saleem and Dr. Syed Hamid Habib. The first draft of the manuscript was written by Dr. Shemaila Saleem, and Dr. Syed Hamid Habib commented on previous versions of the manuscript. Both the authors read and approved the final manuscript.

Corresponding author

Correspondence to Shemaila Saleem.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleem, S., Habib, S.H. Implications of Genetic Factors and Modifiers in Autism Spectrum Disorders: a Systematic Review. Rev J Autism Dev Disord 11, 172–183 (2024). https://doi.org/10.1007/s40489-022-00333-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40489-022-00333-7

Keywords

Navigation