Skip to main content

Advertisement

Log in

New Genetic Approaches for Early Diagnosis and Treatment of Autism Spectrum Disorders

  • Review Paper
  • Published:
Review Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

Autism spectrum disorders (ASD) are common heterogeneous neurodevelopmental disorders, characterized by disruptions in social interactions, communication, and limitations in behavior. Early diagnosis is an important step to prevent progression of ASD. Recent developments in genetic technology provide useful tools to investigate the molecular mechanisms involved in autism. Despite a number of noteworthy studies, there is not yet enough understanding of the genetic etiology of ASD. Research should focus on multidisciplinary approaches to improve early diagnosis and intervention of autism. It is important to study the combinatorial effects of genetic, epigenetic, and environmental factors. This review focuses on current research in ASD, highlighting the importance of identifying new approaches, such as next generation sequencing (NGS) and microRNA (miRNA) technologies, to introduce possible ways for developing new biomarkers and drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdallah, M. W., Larsen, N., Grove, J., Norgaard-Pedersen, B., Thorsen, P., Mortensen, E. L., & Hougaard, D. M. (2013). Amniotic fluid inflammatory cytokines: potential markers of immunologic dysfunction in autism spectrum disorders. The World Journal of Biological Psychiatry, 14(7), 528–553.

    PubMed  Google Scholar 

  • Abidi, F. E., Holloway, L., Moore, C. A., Weaver, D. D., Simensen, R. J., Stevenson, R. E., Rogers, R. C., & Schwartz, C. E. (2008). Mutations in JARID1C are associated with X-linked mental retardation, short stature and hyperreflexia. Journal of Medical Genetics. https://doi.org/10.1136/jmg.2008.058990.

    PubMed  Google Scholar 

  • Abrahams, B. S., & Geschwind, D. H. (2008). Advances in autism genetics: on the threshold of a new neurobiology. Nature Reviews Genetics, 9(5), 341–355.

    PubMed  PubMed Central  Google Scholar 

  • Adegbola, A., Gao, H., Sommer, S., & Browning, M. (2008). A novel mutation in JARID1C/SMCX in a patient with autism spectrum disorder (ASD). American Journal of Medical Genetics. Part A. https://doi.org/10.1002/ajmg.a.32142.

    PubMed  Google Scholar 

  • Ahn, J. W., Bint, S., Bergbaum, A., Mann, K., Hall, R. P., & Ogilvie, C. M. (2013). Array CGH as a first line diagnostic test in place of karyotyping for postnatal referrals-results from four years’ clinical application for over 8,700 patients. Molecular Cytogenetics, 6(1), 16.

    PubMed  PubMed Central  Google Scholar 

  • Almad, A. A., & Maragakis, N. J. (2012). Glia: an emerging target for neurological disease therapy. Stem Cell Research & Therapy, 3, 37.

    Google Scholar 

  • Alter, M. D., Kharkar, R., Ramsey, K. E., Craig, D. W., Melmed, R. D., Grebe, T. A., Bay, R. C., Ober-Reynolds, S., Kirwan, J., Jones, J. J., Turner, J. B., Hen, R., & Stephan, D. A. (2011). Autism and increased paternal age related changes in global levels of gene expression regulation. PLoS One, 6, e16715.

    PubMed  PubMed Central  Google Scholar 

  • Amir, R. E., Van den Veyver, I. B., Wan, M., Tran, C. Q., Francke, U., & Zoghbi, H. Y. (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpGbinding protein 2. Nature Genetics, 23, 185–188.

    PubMed  Google Scholar 

  • Anney, R., Klei, L., Pinto, D., et al. (2010). A genome-wide scan for common alleles affecting risk for autism. Human Molecular Genetics, 19(20), 4072–4082.

    PubMed  PubMed Central  Google Scholar 

  • Ansel, A., Rosenzweig, J. P., Zisman, P. D., Melamed, M., & Gesundheit, B. (2017). Variation in gene expression in autism spectrum disorders: an extensive review of transcriptomics studies. Frontiers in Neuroscience, 10, 601.

    PubMed  PubMed Central  Google Scholar 

  • Aronica, E., Fluiter, K., Iyer, A., Zurolo, E., Vreijling, J., van Vliet, E. A., Baayen, J. C., & Gorter, J. A. (2010). Expression pattern of miR-146a, aninflammation-associated microRNA, in experimental and human temporallobe epilepsy. The European Journal of Neuroscience, 31, 1100–1107.

    PubMed  Google Scholar 

  • Bailey, A., Le Couteur, A., Gottesman, I., Bolton, P., Simonoff, E., Yuzda, E., & Rutter, M. (1995). Autism as a strongly genetic disorder: evidence from a British twin study. Psychological Medicine, 25(1), 63–77.

    PubMed  Google Scholar 

  • Beckmann, J. S., & Antonarakis, S. E. (2010). Lessons from the genome-wide association studies for complex multifactorial disorders and traits. In M. R. Speicher, A. G. Motulsky, & S. E. Antonarakis (Eds), Vogel and Motulsky’s human genetics. Berlin, Heidelberg: Springer. Vogel and Motulsky’s Human Genetics, 287–297. https://doi.org/10.1007/978-3-540-37654-5_10.

    Google Scholar 

  • Brookes, E., Laurent, B., Õunap, K., Carroll, R., Moeschler, J. B., Field, M., Schwartz, C. E., Gecz, J., & Shi, Y. (2015). Mutations in the intellectual disability gene KDM5C reduce protein stability and demethylase activity. Human Molecular Genetics. https://doi.org/10.1093/hmg/ddv046.

    PubMed  PubMed Central  Google Scholar 

  • Brown, A. S., Sourander, A., Hinkka-Yli-Salomaki, S., McKeague, I. W., Sundvall, J., & Surcel, H. M. (2014). Elevated maternal C-reactive protein and autism in a national birth cohort. Molecular Psychiatry, 19, 259–264.

    PubMed  Google Scholar 

  • Burstyn, I., Wang, X., Yasui, Y., Sithole, F., & Zwaigenbaum, L. (2011). Autism spectrum disorders and fetal hypoxia in a population-based cohort: accounting for missing exposures via estimation-maximization algorithm. BMC Medical Research Methodology, 11, 2.

    PubMed  PubMed Central  Google Scholar 

  • Bustos, M., Venkataramanan, R., & Caritis, S. (2017). Nausea and vomiting of pregnancy—what’s new? Autonomic Neuroscience, 202, 62–72.

    PubMed  Google Scholar 

  • Caglayan, A. O. (2010). Genetic causes of syndromic and non-syndromic autism. Developmental Medicine and Child Neurology, 52(2), 130–138.

    PubMed  Google Scholar 

  • Chahrour, M. H., Yu, T. W., Lim, E. T., Ataman, B., Coulter, M. E., Hill, R. S., Stevens, C. R., Schubert, C. R., ARRA Autism Sequencing Collaboration, Greenberg, M. E., Gabriel, S. B., & Walsh, C. A. (2012). Whole exome sequencing and homozygosity analysis implicate depolarization regulated neuronal genes in autism. PLoS Genetics, 8, e1002635.

    PubMed  PubMed Central  Google Scholar 

  • Chen, Y. L., & Shen, C. K. (2013). Modulation of mGluR-dependent MAP1B translationand AMPA receptor endocytosis by microRNA miR-146a-5p. The Journal of Neuroscience, 33, 9013–9020.

    PubMed  PubMed Central  Google Scholar 

  • Cheng, T. L., & Qiu, Z. (2014). MeCP2: multifaceted roles in gene regulation and neuraldevelopment. Neuroscience Bulletin. https://doi.org/10.1007/s12264-014-1452-6.

    PubMed  PubMed Central  Google Scholar 

  • Cho, S. C., Yim, S. H., Yoo, H. K., Kim, M. Y., Jung, G. Y., Shin, G. W., Kim, B. N., Hwang, J. W., Kang, J. J., Kim, T. M., & Chung, Y. J. (2009). Copy number variations associated with idiopathic autism identified by whole-genome microarray-based comparative genomic hybridiza-tion. Psychiatric Genetics, 19(4), 177–185.

    PubMed  Google Scholar 

  • Chung, B. H., Tao, V. Q., & Tso, W. W. (2014). Copy number variation and autism: new insights and clinical implications. Journal of the Formosan Medical Association, 113, 400–408.

    PubMed  Google Scholar 

  • Connolly, J. J., & Hakonarson, H. (2012). The impact of genomics on pediatric research and medicine. Pediatrics, 129, 1150–1160.

    PubMed  PubMed Central  Google Scholar 

  • Cuscó, I., Medrano, A., Gener, B., Vilardell, M., Gallastegui, F., Villa, O., González, E., Rodríguez-Santiago, B., Vilella, E., Del Campo, M., & Pérez-Jurado, L. A. (2009). Autism-specific copy number variants further implicate the phosphatidylinositol signalling pathway and the glutamatergic synapse in the etiology of the disorder. Human Molecular Genetics, 18(10), 1795–1804.

    PubMed  PubMed Central  Google Scholar 

  • Daniels, J. L., Forssen, U., Hultman, C. M., Cnattingius, S., Savitz, D. A., Feychting, M., & Sparen, P. (2008). Parental psychiatric disorders associated with autism spectrum disorders in the offspring. Pediatrics, 121, e1357–e1356.

    PubMed  Google Scholar 

  • De Rubeis, S., He, X., Goldberg, A. P., Poultney, C. S., Samocha, K., Cicek, A. E., Kou, Y., Liu, L., Fromer, M., Walker, S., et al. (2014). Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 515, 209–215.

    PubMed  PubMed Central  Google Scholar 

  • Deckelbaum, R. J., Worgall, T. S., & Seo, T. (2006). n-3 fatty acids and gene expression. The American Journal of Clinical Nutrition, 83(6 Suppl), 1520S–1525S.

  • Dong, S., Walker, M. F., Carriero, N. J., DiCola, M., Willsey, A. J., Ye, A. Y., Waqar, Z., Gonzale, L. E., Overton, J. D., Frahm, S., et al. (2014). De novo insertions and deletions of predominantly paternal origin are associated with autism spectrum disorder. Cell Reports, 9, 16–23.

    PubMed  Google Scholar 

  • E.C.T.S. Consortium. (1993). Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell. https://doi.org/10.1016/0092-8674(93)90618-Z.

  • Ellis, S. E., Gupta, S., Moes, A., West, A. B., & Arking, D. E. (2017). Exaggerated CpH methylation in the autism-affected brain. Molecular Autism. https://doi.org/10.1186/s13229-017-0119-y.

  • Endersby, R., & Baker, S. J. (2008). PTEN signaling in brain: neuropathology and tumorigenesis. Oncogene, 27, 5416–5430.

    PubMed  Google Scholar 

  • Fischbach, G. D., & Lord, C. (2010). The Simons simplex collection: a resource for identification of autism genetic risk factors. Neuron, 68, 192–195.

    PubMed  Google Scholar 

  • Foley, D. L., Craig, J. M., Morley, R., Olsson, C. A., Dwyer, T., Smith, K., & Saffery, R. (2009). Prospects for epigenetic epidemiology. American Journal of Epidemiology, 169, 389–400.

    PubMed  PubMed Central  Google Scholar 

  • Folstein, S. E., & Rosen-Sheidley, B. (2001). Genetics of autism: complex aetiology for a heterogeneous disorder. Nature Reviews. Genetics, 2, 943–955.

    PubMed  Google Scholar 

  • Fregeac, J., Colleaux, L., & Nguyen, L. M. (2016). The emerging roles of MicroRNAs in autism spectrum disorders. Neuroscience and Biobehavioral Reviews, 71, 729–738.

    PubMed  Google Scholar 

  • Freitag, C. M., Staal, W., & Klauck, S. M. (2010). Genetics of autis¬tic disorders: review and clinical implications. European Child & Adolescent Psychiatry, 19, 169–178.

    Google Scholar 

  • Gallagher, D., Voronova, A., Zander, M. A., Cancino, G. I., Bramall, A., Krause, M. P., Abad, C., Tekin, M., Neilsen, P. M., Callen, D. F., Scherer, S. W., Keller, G. M., Kaplan, D. R., Walz, K., & Miller, F. D. (2015). Ankrd11 is a chromatin regulator involved in autism that is essential for neural development. Developmental Cell, 32, 31–42.

    PubMed  Google Scholar 

  • Gardener, H., Spiegelman, D., & Buka, S. L. (2009). Prenatal risk factors for autism: comprehensive meta-analysis. The British Journal of Psychiatry, 195, 7–14.

    PubMed  PubMed Central  Google Scholar 

  • Girirajan, S., Dennis, M. Y., Baker, C., Malig, M., Coe, B. P., & Campbell, C. D. (2013). Refinement and discovery of new hotspots of copy-number variation associated with autism spectrum disorder. American Journal of Human Genetics, 92, 221–237.

    PubMed  PubMed Central  Google Scholar 

  • Goines, P. E., Croen, L. A., Braunschweig, D., Yoshida, C. K., Grether, J., Hansen, R., et al. (2011). Increased mid-gestational IFN-gamma IFN I gamma-4 and IL-5 in women giving birth to a child with autism: a case-control study. Molecular Autism, 2(1), 13.

    PubMed  PubMed Central  Google Scholar 

  • Gray, S. J., Matagne, V., Bachaboina, L., Yadav, S., Ojeda, S. R., & Samulski, R. J. (2011). Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Molecular Therapy, 19, 1058–1069.

    PubMed  PubMed Central  Google Scholar 

  • Hallmayer, J., Cleveland, S., Torres, A., Phillips, J., Cohen, B., Torigoe, T., et al. (2011). Genetic heritability and shared environmental factors among twin pairs with autism. Archives of General Psychiatry, 68, 1095–1102.

    PubMed  PubMed Central  Google Scholar 

  • Holtmann M, Bölte S, Poustka F. (2007). Autism spectrum disorders: sex differences in autistic behaviour domains and coexisting psychopathology. Developmental Medicine and Child Neurology49(5):361–6.

    Google Scholar 

  • Hsiao, E. Y., McBride, S. W., Chow, J., Mazmanian, S. K., & Patterson, P. H. (2012). Modeling an autism risk factor in mice leads to permanent immune dysregulation. Proceedings of the National Academy of Sciences of the United States of America, 109(31), 12776–12781.

    PubMed  PubMed Central  Google Scholar 

  • Hultman, C. M., Sandin, S., Levine, S. Z., Lichtenstein, P., & ReichenbergA. (2011). Advancing paternal age and risk of autism: new evidence from a population-based study and a meta-analysis of epidemiological studies. Molecular Psychiatry, 16, 1203–1212.

    PubMed  Google Scholar 

  • Ivanov, H. Y., Stoyanova, V. K., Popov, N. T., & Vachev, T. I. (2015). Autism spectrum disorder - A complex genetic disorder. Folia Medica, 57(1), 19–28.

    PubMed  Google Scholar 

  • Iyer, A., Zurolo, E., Prabowo, A., Fluiter, K., Spliet, W. G., van Rijen, P. C., Gorter, J. A., & Aronica, E. (2012). MicroRNA-146a: a key regulator of astrocyte-mediatedinflammatory response. PLoS One, 7, e44789.

    PubMed  PubMed Central  Google Scholar 

  • Jacquemont, M. L., Sanlaville, D., Redon, R., Raoul, O., Cormier-Daire, V., Lyonnet, S., Amiel, J., Le Merrer, M., Heron, D., de Blois, M. C., Prieur, M., Vekemans, M., Carter, N. P., Munnich, A., Colleaux, L., & Philippe, A. (2006). Array-based comparative genomic hybridisationidentifies high frequency of cryptic chromosomal rearrangements in patientswith syndromic autism spectrum disorders. Journal of Medical Genetics, 43, 843–849.

    PubMed  PubMed Central  Google Scholar 

  • Jin, P., Zarnescu, D. C., Ceman, S., Nakamoto, M., Mowrey, J., Jongens, T. A., Nelson, D. L., Moses, K., & Warren, S. T. (2004). Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nature Neuroscience, 7, 113–117.

    PubMed  Google Scholar 

  • Jovičić, A., Roshan, R., Moisoi, N., Pradervand, S., Moser, R., Pillai, B., & Luthi-Carter, R. (2013). Comprehensive expression analyses of neuralcell-type-specific miRNAs identify new determinants of the specification andmaintenance of neuronal phenotypes. The Journal of Neuroscience, 33, 5127–5137.

    PubMed  PubMed Central  Google Scholar 

  • Kichukova, T. M., Popov, N. T., Ivanov, I. S., & Vachev, T. I. (2017). Profiling of circulating serum MicroRNAs in children with autism Spectrum disorder using stem-loop qRT-PCR assay. Folia Med (Plovdiv). https://doi.org/10.1515/folmed-2017-0009.

    PubMed  Google Scholar 

  • Koks, N., Ghassabian, A., Greaves-Lord, K., Hofman, A., Jaddoe, V. W., Verhulst, F. C., & Tiemeier, H. (2016). Maternal C-reactive protein concentration in early pregnancy and child autistic traits in the general population. Paediatric and Perinatal Epidemiology, 30(2), 181–189.

    PubMed  Google Scholar 

  • Kolevzon, A., Gross, R., & Reichenberg, A. (2007). Prenatal and perinatal risk factors for autism: a review and integration of findings. Archives of Pediatrics & Adolescent Medicine, 161, 326–333.

    Google Scholar 

  • Kong, A., Frigge, M. L., Masson, G., Besenbacher, S., Sulem, P., Magnusson, G., et al. (2012). Rate of de novo mutations and the importance of father’s age to disease risk. Nature, 488, 471–475.

    PubMed  PubMed Central  Google Scholar 

  • Kumar, R. A., & Christian, S. L. (2009). Genetics of autism spec¬trum disorders. Current Neurology and Neuroscience Reports, 9, 188–197.

    PubMed  Google Scholar 

  • Kumsta, R., Hummel, E., Chen, F. S., & Heinrichs, M. (2013). Epigenetic regulation of the oxytocin receptor gene: implications for behavioral neuroscience. Frontiers in Neuroscience, 7, 83.

    PubMed  PubMed Central  Google Scholar 

  • Kyle, S. M., Saha, P. K., Brown, H. M., Chan, L. C., & Justice, M. J. (2016). MeCP2 co-ordinates liver lipid metabolism with the NCoR1/HDAC3 corepressor complex. Human Molecular Genetics, 25(14), 3029–3041.

    PubMed  PubMed Central  Google Scholar 

  • Lee, B. K., & McGrath, J. J. (2015). Advancing parental age and autism: multifactorial pathways. Trends in Molecular Medicine, 21, 118–125.

    PubMed  Google Scholar 

  • Lee, B., Lee, K., Panda, S., Gonzales-Rojas, R., Chong, A., Bugay, V., Park, H. M., Brenner, R., Murthy, N., & Lee, H. Y. (2018). Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nature Biomedical Engineering. https://doi.org/10.1038/s41551-018-0252-8.

    PubMed  PubMed Central  Google Scholar 

  • Li, X., Zou, H., & Brown, W. T. (2012). Genes associated with autism spectrum disorder. Brain Research Bulletin, 88, 543–552.

    PubMed  Google Scholar 

  • Li, Y., Yiming, W., & Bai-Lin, W. (2015). Genetic architecture, epigenetic influence and environment exposure in the pathogenesis of autism. Science China. Life Sciences. https://doi.org/10.1007/s11427-015-4941-1.

    PubMed  Google Scholar 

  • Liu, X., & Takumi, T. (2014). Genomic and genetic aspects of autism spectrum disorder. Biochemical and Biophysical Research Communications, 452, 244–253.

    PubMed  Google Scholar 

  • Liu, L., Gao, J., He, X., Cai, Y., Wang, L., & Fan, X. (2017). Association between assisted reproductive technology and the risk of autism spectrum disorders in the offspring: a meta-analysis. Scientific Reports. https://doi.org/10.1038/srep46207.

  • Loke, Y. J., Hannan, A. J., & Craig, J. M. (2015). The role of epigenetic change in autism spectrum disorders. Frontiers in Neurology. https://doi.org/10.3389/fneur.2015.00107.

  • Lokody, I. (2014). Epigenetics: mechanisms underlying fragile X syndrome. Nature Reviews Genetics. https://doi.org/10.1038/nrg3714.

    Google Scholar 

  • Lyall, K., Munger, K. L., O’Reilly, É. J., Santangelo, S. L., & Ascherio, A. (2013). Maternal dietary fat intake in association with autism spectrum disorders. American Journal of Epidemiology, 178, 209–220.

    PubMed  PubMed Central  Google Scholar 

  • Malkova, N. V., Yu, C. Z., Hsiao, E. Y., Moore, M. J., & Patterson, P. H. (2012). Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain, Behavior, and Immunity, 26(4), 607–616.

    PubMed  PubMed Central  Google Scholar 

  • Matagne, V., Ehinger, Y., Saidi, L., Borges-Correia, A., Barkats, M., Bartoli, M., Villard, L., & Roux, J. C. (2017). A codon-optimized Mecp2 transgene corrects breathing deficits and improves survival in a mouse model of Rett syndrome. Neurobiology of Disease, 99, 1–11.

    PubMed  Google Scholar 

  • Matson, J. L., & Neal, D. (2010). Differentiating communication disorders and autism in children. Research in Autism Spectrum Disorders, 4(4), 626–632.

    Google Scholar 

  • Mayo, J., Chlebowski, C., Fein, D. A., & Eigsti, I.-M. (2013). Age of first words predicts cognitive ability and adaptive skills in children with ASD. Journal of Autism and Developmental Disorders, 43(2), 253–264.

    PubMed  PubMed Central  Google Scholar 

  • Mei, J., et al. (2011). MicroRNA-146a inhibits glioma development by targetingNotch1. Molecular and Cellular Biology, 31, 3584–3592.

    PubMed  PubMed Central  Google Scholar 

  • Melnyk, S., Fuchs, G. J., Schulz, E., Lopez, M., Kahler, S. G., Fussell, J. J., Bellando, J., Pavliv, O., Rose, S., Seidel, L., Gaylor, D. W., & James, S. J. (2012). Metabolic imbalance associated with methylation dysregulation and oxidative damage in children with autism. Journal of Autism and Developmental Disorders. https://doi.org/10.1007/s10803-011-1260-7.

    Google Scholar 

  • Nguyen, A., Rauch, T. A., Pfeifer, G. P., & Hu, V. W. (2010). Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. The FASEB Journal, 24, 3036–3051.

    PubMed  PubMed Central  Google Scholar 

  • Nguyen, L. S., Lepleux, M., Makhlouf, M., Martin, C., Fregeac, J., Siquier-Pernet, K., Philippe, A., Feron, F., Gepner, B., Rougeulle, C., Humeau, Y., & Colleaux, L. (2016). Profiling olfactory stem cells from living patients identifies miRNAs relevant for autism pathophysiology. Molecular Autism, 7, 1.

    PubMed  PubMed Central  Google Scholar 

  • Niemeijer, M. N., Grooten, I. J., Vos, N., Bais, J. M., van der Post, J. A., Mol, B. W., Roseboom, T. J., Leeflang, M. M., & Painter, R. C. (2014). Diagnostic markers for hyperemesis gravidarum: a systematic review and metaanalysis. American Journal of Obstetrics and Gynecology. https://doi.org/10.1016/j.ajog.2014.02.012.

    Google Scholar 

  • O’Roak, B. J., Vives, L., Girirajan, S., et al. (2012). Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature, 485, 246–250.

    PubMed  PubMed Central  Google Scholar 

  • Ounap, K., Puusepp-Benazzouz, H., Peters, M., Vaher, U., Rein, R., Proos, A., Field, M., & Reimand, T. (2012). A novel c.2T > C mutation of the KDM5C/JARID1C gene in one large family with X-linked intellectual disability. European Journal of Medical Genetics, 55(3), 178–184.

    PubMed  Google Scholar 

  • Ozonoff, S., Young, G. S., Carter, A., Messinger, D., Yirmiya, N., Zwaigenbaum, L., Bryson, S., Carver, L. J., Constantino, J. N., Dobkins, K., et al. (2011). Recurrence risk for autism spectrum disorders: a baby siblings research consortium study. Pediatrics., 128(3), e488–e495.

    PubMed  PubMed Central  Google Scholar 

  • Parletta, N., Niyonsenga, T., & Duff, J. (2016). Omega-3 and omega-6 polyunsaturated fatty acid levels and correlations with symptoms in children with attention deficit hyperactivity disorder, autistic Spectrum disorder and typically developing controls. PLoS One. https://doi.org/10.1371/journal.pone.0156432.

    PubMed  PubMed Central  Google Scholar 

  • Parner, E. T., Baron-Cohen, S., Lauritsen, M. B., Jørgensen, M., Schieve, L. A., Yeargin-Allsopp, M., et al. (2012). Parental age and autism spectrum disorders. Annals of Epidemiology. https://doi.org/10.1016/j.annepidem.2011.12.006.

    PubMed  PubMed Central  Google Scholar 

  • Patterson, P. H. (2011). Maternal infection and immune involvement in autism. Trends in Molecular Medicine, 17, 389–394.

    PubMed  PubMed Central  Google Scholar 

  • Pepper, G. V., & Craig Roberts, S. (2006). Rates of nausea and vomiting in pregnancy and dietary characteristics across populations. Proceedings of the Biological Sciences, 273, 2675–2679.

    Google Scholar 

  • Perera, F., & Herbstman, J. (2011). Prenatal environmental exposures, epigenetics, and disease. Reproductive Toxicology. https://doi.org/10.1016/j.reprotox.2010.12.055.

    PubMed  Google Scholar 

  • Persico, A. M., & Napolioni, V. (2013). Autism genetics. Behavioural Brain Research. https://doi.org/10.1016/j.bbr.2013.06.012.

    PubMed  Google Scholar 

  • Pignataro, D., Sucunza, D., Vanrell, L., Lopez-Franco, E., Dopeso-Reyes, I. G., Vales, A., Hommel, M., Rico, A. J., Lanciego, J. L., & Gonzalez-Aseguinolaza, G. (2017). Adeno-associated viral vectors serotype 8 for cell-specific delivery of therapeutic genes in the central nervous system. Frontiers in Neuroanatomy. https://doi.org/10.3389/fnana.2017.00002.

  • Puffenberger, E. G., Jinks, R. N., Wang, H., et al. (2012). A homo¬zygous missense mutation in HERC2 associated with global developmental delay and autism spectrum disorder. Human Mutation, 33, 1639–1646.

    PubMed  Google Scholar 

  • Qiao, Y., Riendeau, N., Koochek, M., Liu, X., Harvard, C., Hildebrand, M. J., Holden, J. J., Rajcan-Separovic, E., & Lewis, M. E. (2009). Phenomic determinants of genomic variation in autism spectrum disorders. Journal of Medical Genetics, 46(10), 680–688.

    PubMed  Google Scholar 

  • Ronald, A., & Hoekstra, R. A. (2011). Autism spectrum disorders and autistic traits: a decade of new twin studies. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 156B, 255–274.

    Google Scholar 

  • Roth, C., Magnus, P., Schjølberg, S., Stoltenberg, C., Surén, P., McKeague, I. W., et al. (2011). Folic acid supplements in pregnancy and severe language delay in children. JAMA, 306, 1566–1573.

    PubMed  PubMed Central  Google Scholar 

  • Salehi, M., Kamali, E., Karahmadi, M., & Mousavi, S. M. (2017). RORA and autism in the Isfahan population: is there an epigenetic relationship. Cell Journal, 18(4), 540–546.

    PubMed  Google Scholar 

  • Sandin, S., Hultman, C. M., Kolevzon, A., Gross, R., MacCabe, J. H., & Reichenberg, A. (2012). Advancing maternal age is associated with increasing risk for autism: a review and meta-analysis. Journal of the American Academy of Child & Adolescent Psychiatry. https://doi.org/10.1016/j.jaac.2012.02.018.

    Google Scholar 

  • Santos-Rebouças, C. B., Fintelman-Rodrigues, N., Jensen, L. R., Kuss, A. W., Ribeiro, M. G., Campos, M., Jr., Santos, J. M., & Pimentel, M. M. (2011). A novel nonsense mutation in KDM5C/JARID1C gene causing intellectual disability, short stature and speech delay. Neuroscience Letters. https://doi.org/10.1016/j.neulet.2011.04.065.

    PubMed  Google Scholar 

  • Sarachana, T., & Hu, V. W. (2013). Genome-wide identification of transcriptional targets of RORA reveals direct regulation of multiple genes associated with autism spectrum disorder. Molecular Autism, 4, 14.

    PubMed  PubMed Central  Google Scholar 

  • Schellenberg, G. D., et al. (2006). Evidence for multiple loci from a genome scan of autism kindreds. Molecular Psychiatry, 11, 1049–1060.

    PubMed  Google Scholar 

  • Schmidt, R. J., Tancredi, D. J., Ozonoff, S., Hansen, R. L., Hartiala, J., Allayee, H., et al. (2012). Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (CHildhood autism risks from genetics and environment) case-control study. The American Journal of Clinical Nutrition, 96, 80–89.

    PubMed  PubMed Central  Google Scholar 

  • Schreibman L. (2000). Intensive behavioral/psychoeducational treatments for autism: research needs and future directions. Journal of Autism and Developmental Disorders, (5):373–8.

    PubMed  Google Scholar 

  • Schroeder, D. I., Blair, J. D., Lott, P., Yu, H. O., Hong, D., Crary, F., Ashwood, P., Walker, C., Korf, I., Robinson, W. P., et al. (2013). The human placenta methylome. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.1215145110.

    Google Scholar 

  • Schroeder, D. I., Schmidt, R. J., Crary-Dooley, F. K., Walker, C. K., Ozonoff, S., Tancredi, D. J., Hertz-Picciotto, I., & LaSalle, J. M. (2016). Placental methylome analysis from a prospective autism study. Molecular Autism. https://doi.org/10.1186/s13229-016-0114-8.

  • Schumann, C. M., Sharp, F. R., Ander, B. P., & Stamova, B. (2017). Possible sexually dimorphic role of miRNA and other sncRNA in ASD brain. Molecular Autism. https://doi.org/10.1186/s13229-017-0117-0.

  • Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., Walsh, T., et al. (2007). Strong association of de novo copy number mutations with autism. Science, 316, 445–449.

    PubMed  PubMed Central  Google Scholar 

  • Shimojo, H., Isomura, A., Ohtsuka, T., Kori, H., Miyachi, H., & Kageyama, R. (2016). Oscillatory control of Delta-like1 in cell interactions regulates dynamic gene expression and tissue morphogenesis. Genes & Development, 30(1), 102–116.

    Google Scholar 

  • Silverman, J. L., et al. (2012). Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social defcits in mouse models of autism. Science Translational Medicine. https://doi.org/10.1126/scitranslmed.3003501.

    PubMed  PubMed Central  Google Scholar 

  • Siniscalco, D., Cirillo, A., Bradstreet, J. J., et al. (2013). Epigenetic findings in autism: new perspectives for therapy. International Journal of Environmental Research and Public Health, 10, 4261–4273.

    PubMed  PubMed Central  Google Scholar 

  • Siu, M. T., & Weksberg, R. (2017). Epigenetics of autism spectrum disorder. Advances in Experimental Medicine and Biology, 978, 63–90.

    PubMed  Google Scholar 

  • Sivanesan, S., Tan, A., Jeyaraj, R., Lam, J., Gole, M., Hardan, A., Ashkan, K., & Rajadas, J. (2017). Pharmaceuticals and stem cells in autism spectrum disorders: wishful thinking? World Neurosurgery, 98, 659–672.

    PubMed  Google Scholar 

  • Staahl, B. T., Benekareddy, M., Coulon-Bainier, C., Banfal, A. A., Floor, S. N., Sabo, J. K., Urnes, C., Munares, G. A., Ghosh, A., & Doudna, J. A. (2017). Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nature Biotechnology, 35(5), 431–434.

    PubMed  PubMed Central  Google Scholar 

  • Steffenburg, S., Gillberg, C., Hellgren, L., Andersson, L., Gillberg, I. C., Jakobsson, G., & Bohman, M. (1989). A twin study of autism in Denmark: Finland, Iceland, Norway and Sweden. Journal of Child Psychology and Psychiatry and Allied Disciplines, 30(3), 405–416.

    Google Scholar 

  • Surén, P., Roth, C., Bresnahan, M., Haugen, M., Hornig, M., Hirtz, D., Lie, K. K., Lipkin, W. I., Magnus, P., Reichborn-Kjennerud, T., Schjølberg, S., Davey Smith, G., Øyen, A. S., Susser, E., & Stoltenberg, C. (2013). Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. JAMA. https://doi.org/10.1001/jama.2012.155925.

    PubMed  PubMed Central  Google Scholar 

  • Sztainberg, Y., & Zoghbi, H. Y. (2016). Lessons learned from studying syndromic autism spectrum disorders. Nature Neuroscience, 19(11), 1408–1417.

    PubMed  Google Scholar 

  • Tao, J., et al. (2016). Negative allosteric modulation of mGluR5 partially corrects pathophysiology in a mouse model of Rett syndrome. The Journal of Neuroscience, 36, 11946–11958.

    PubMed  PubMed Central  Google Scholar 

  • Vallianatos, C. N., Farrehi, C., Friez, M. J., Burmeister, M., Keegan, C. E., & Iwase, S. (2018). Altered gene-regulatory function of KDM5C by a novel mutation associated with autism and intellectual disability. Frontiers in Molecular Neuroscience. https://doi.org/10.3389/fnmol.2018.00104.

  • Van Balkom, I. D., Bresnahan, M., Vuijk, P. J., Hubert, J., Susser, E., & Hoek, H. W. (2012). Paternal age and risk of autism in an ethnically diverse, non-industrialized setting: Aruba. PLoS One, 7, e45090.

    PubMed  PubMed Central  Google Scholar 

  • Van Slegtenhorst, M., De Hoogt, R., Hermans, C., Nellist, M., Janssen, B., Verhoef, S., Lindhout, D., Van den Ouweland, A., Halley, D., & Young, J. (1997). Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science, 277, 805–808.

    PubMed  Google Scholar 

  • Volkmar, F. R., State, M., & Klin, A. (2009). Autism and autism spectrum disorders: diagnostic issues for the coming decade. Journal of Child Psychology and Psychiatry, 50, 108–115. https://doi.org/10.1111/j.1469-7610.2008.

    Article  PubMed  Google Scholar 

  • Wang, K., Zhang, H., Ma, D., et al. (2009). Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature, 459, 528–533.

    PubMed  PubMed Central  Google Scholar 

  • Wang, M., Li, K., Zhao, D., & Li, L. (2017). The association between maternal use of folic acid supplements during pregnancy and risk of autism spectrum disorders in children: a meta-analysis. Molecular Autism, 8, 51.

    PubMed  PubMed Central  Google Scholar 

  • Weinstock, M. (2008). The long-term behavioural consequences of prenatal stress. Neuroscience and Biobehavioral Reviews, 32, 1073–1086.

    PubMed  Google Scholar 

  • Weiss, L. A., Arking, D. E., Daly, M. J., et al. (2009). A genome-wide linkage and association scan reveals novel loci for autism. Nature, 461, 802–808.

    PubMed  PubMed Central  Google Scholar 

  • Wiles, E. T., & Selker, E. U. (2017). H3K27 methylation: a promiscuous repressive chromatin mark. Current Opinion in Genetics & Development, 43, 31–37.

    Google Scholar 

  • Windham, G. C., Lyall, K., Anderson, M., & Kharrazi, M. (2016). Autism spectrum disorder risk in relation to maternal mid-pregnancy serum hormone and protein markers from prenatal screening in California. Journal of Autism and Developmental Disorders, 46, 478–488.

    PubMed  Google Scholar 

  • Wu, Y. E., Parikshak, N. N., Belgard, T. G., & Geschwind, D. H. (2016). Genome-wide, integrative analysis implicates microRNA dysregulation in autism spectrum disorder. Nature Neuroscience, 19(11), 1463–1476.

    PubMed  PubMed Central  Google Scholar 

  • Xu, J., Zwaigenbaum, L., Szatmari, P., & Scherer, S. W. (2004). Molecular cytogenetics of autism. Current Genomics. https://doi.org/10.2174/1389202043349246.

    Google Scholar 

  • Xu, G., Jing, J., Bowers, K., Liu, B., & Bao, W. (2014). Maternal diabetes and the risk of autism spectrum disorders in the offspring: a systematic review and meta-analysis. Journal of Autism and Developmental Disorders, 44(4), 766–775.

    PubMed  PubMed Central  Google Scholar 

  • Yang, S., Chang, R., Yang, H., Zhao, T., Hong, Y., Kong, H. E., Sun, X., Qin, Z., Jin, P., Li, S., & Li, X. J. (2017). CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI92087.

    Google Scholar 

  • Yeh, E., & Weiss, L. A. (2016). If genetic variation could talk: what genomic data may teach us about the importance of gene expression regulation in the genetics of autism. Molecular and Cellular Probes, 30, 346–356.

    PubMed  Google Scholar 

  • Yin, J., & Schaaf, C. P. (2017). Autism genetics- an overview. Prenatal Diagnosis, 37(14), 30.

    Google Scholar 

  • Yonan, A. L., Alarcon, M., Cheng, R., Magnusson, P. K. E., Spence, S. J., Palmer, A. A., et al. (2003). A genomewide screen of 345 families for autismsusceptibility loci. American Journal of Human Genetics, 73, 886–897.

    PubMed  PubMed Central  Google Scholar 

  • Zahir, F., & Friedman, J. M. (2007). The impact of array genomic hybridization on mental retardation research: a review of current technologies and their clinical utility. Clinical Genetics, 72, 271–287.

    PubMed  Google Scholar 

  • Zerbo, O., Qian, Y., Yoshida, C., Grether, J. K., Van de Water, J., & Croen, L. A. (2015). Maternal infection during pregnancy and autism spectrum disorders. Journal of Autism and Developmental Disorders, 45(12), 4015–4025.

    PubMed  PubMed Central  Google Scholar 

  • Zerbo, O., Traglia, M., Yoshida, C., Heuer, L. S., Ashwood, P., Delorenze, G. N., Hansen, R. L., Kharrazi, M., Van de Water, J., Yolken, R. H., Weiss, L. A., & Croen, L. A. (2016). Maternal mid-pregnancy C-reactive protein and risk of autism spectrum disorders: the early markers for autism study. Translational Psychiatry, 6(4), e783.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meryem Alagoz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alagoz, M., Kherad, N., Gavaz, M. et al. New Genetic Approaches for Early Diagnosis and Treatment of Autism Spectrum Disorders. Rev J Autism Dev Disord 6, 367–380 (2019). https://doi.org/10.1007/s40489-019-00167-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40489-019-00167-w

Keywords

Navigation