Skip to main content

Advertisement

Log in

A concise guide to transtemporal contrast-enhanced ultrasound in children

  • Pictorial Essay
  • Published:
Journal of Ultrasound Aims and scope Submit manuscript

Abstract

Brain contrast-enhanced ultrasound offers insights into the brain beyond the anatomic information offered by conventional grayscale ultrasound. In infants, the open fontanelles serve as acoustic windows. In children, whose fontanelles are closed, the temporal bone serves as the ideal acoustic window due to its relatively smaller thickness than the other skull bones. Diagnosis of common neurologic diseases such as stroke, hemorrhage, and hydrocephalus has been performed using the technique. Transtemporal ultrasound and contrast-enhanced ultrasound, however, are rarely used in children due to the prevalent notion that the limited acoustic penetrance degrades diagnostic quality. This review seeks to provide guidelines for the use of transtemporal brain contrast-enhanced ultrasound in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gumus M, Oommen KC, Squires JH (2021) Contrast-enhanced ultrasound of the neonatal brain. Pediatr Radiol. https://doi.org/10.1007/s00247-021-05157-x

    Article  PubMed  Google Scholar 

  2. Eyding J, Fung C, Niesen W-D, Krogias C (2020) Twenty years of cerebral ultrasound perfusion imaging—Is the best yet to come? J Clin Med. https://doi.org/10.3390/jcm9030816

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vinke EJ, Kortenbout AJ, Eyding J, Slump CH, van der Hoeven JG, de Korte CL et al (2017) Potential of contrast-enhanced ultrasound as a bedside monitoring technique in cerebral perfusion: a systematic review. Ultrasound Med Biol 43:2751–2757. https://doi.org/10.1016/j.ultrasmedbio.2017.08.935

    Article  PubMed  Google Scholar 

  4. Hwang M, Sridharan A, Darge K, Riggs B, Sehgal C, Flibotte J et al (2019) Novel quantitative contrast-enhanced ultrasound detection of hypoxic ischemic injury in neonates and infants: pilot study 1. J Ultrasound Med 38:2025–2038. https://doi.org/10.1002/jum.14892

    Article  PubMed  Google Scholar 

  5. Prada F, Bene MD, Fornaro R, Vetrano IG, Martegani A, Aiani L et al (2016) Identification of residual tumor with intraoperative contrast-enhanced ultrasound during glioblastoma resection. Neurosurg Focus 40:E7. https://doi.org/10.3171/2015.11.FOCUS15573

    Article  PubMed  Google Scholar 

  6. Squires JH, Beluk NH, Lee VK, Yanowitz TD, Gumus S, Subramanian S et al (2022) Feasibility and safety of contrast-enhanced ultrasound of the neonatal brain: a prospective study using MRI as the reference standard. AJR Am J Roentgenol 218:152–161. https://doi.org/10.2214/AJR.21.26274

    Article  PubMed  Google Scholar 

  7. Zunker P, Wilms H, Brossmann J, Georgiadis D, Weber S, Deuschl G (2002) Echo contrast-enhanced transcranial ultrasound: frequency of use, diagnostic benefit, and validity of results compared with MRA. Stroke 33:2600–2603. https://doi.org/10.1161/01.str.0000035285.43467.ff

    Article  PubMed  Google Scholar 

  8. Kern R, Diels A, Pettenpohl J, Kablau M, Brade J, Hennerici MG et al (2011) Real-time ultrasound brain perfusion imaging with analysis of microbubble replenishment in acute MCA stroke. J Cereb Blood Flow Metab 31:1716–1724. https://doi.org/10.1038/jcbfm.2011.14

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hwang M, Haddad S, Tierradentro-Garcia LO, Alves CA, Taylor GA, Darge K (2022) Current understanding and future potential applications of cerebral microvascular imaging in infants. Br J Radiol. https://doi.org/10.1259/bjr.20211051

    Article  PubMed  Google Scholar 

  10. Hwang M, Tierradentro-García LO, Hussaini SH, Cajigas-Loyola SC, Kaplan SL, Otero HJ et al (2022) Ultrasound imaging of preterm brain injury: fundamentals and updates. Pediatr Radiol 52:817–836. https://doi.org/10.1007/s00247-021-05191-9

    Article  PubMed  Google Scholar 

  11. Vitale V, Rossi E, Di Serafino M, Minelli R, Acampora C, Iacobellis F et al (2018) Pediatric encephalic ultrasonography: the essentials. J Ultrasound. https://doi.org/10.1007/s40477-018-0349-7

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hwang M, Barnewolt CE, Jüngert J, Prada F, Sridharan A, Didier RA (2021) Contrast-enhanced ultrasound of the pediatric brain. Pediatr Radiol 51:2270–2283. https://doi.org/10.1007/s00247-021-04974-4

    Article  PubMed  Google Scholar 

  13. Freeman CW, Hwang M (2022) Advanced ultrasound techniques for neuroimaging in pediatric critical care: a review. Children (Basel). https://doi.org/10.3390/children9020170

    Article  PubMed  Google Scholar 

  14. Simms DL, Neely JG (1989) Thickness of the lateral surface of the temporal bone in children. Ann Otol Rhinol Laryngol 98:726–731. https://doi.org/10.1177/000348948909800913

    Article  CAS  PubMed  Google Scholar 

  15. Demené C, Robin J, Dizeux A, Heiles B, Pernot M, Tanter M et al (2021) Transcranial ultrafast ultrasound localization microscopy of brain vasculature in patients. Nat Biomed Eng 5:219–228. https://doi.org/10.1038/s41551-021-00697-x

    Article  PubMed  PubMed Central  Google Scholar 

  16. Miller DL, Averkiou MA, Brayman AA, Everbach EC, Holland CK, Wible JH et al (2008) Bioeffects considerations for diagnostic ultrasound contrast agents. J Ultrasound Med 27:611–632. https://doi.org/10.7863/jum.2008.27.4.611 (quiz 633)

    Article  PubMed  Google Scholar 

  17. Seidel G, Meairs S (2009) Ultrasound contrast agents in ischemic stroke. Cerebrovasc Dis 27(Suppl 2):25–39. https://doi.org/10.1159/000203124

    Article  PubMed  Google Scholar 

  18. Sridharan A, Riggs B, Darge K, Huisman TAGM, Hwang M (2021) The wash-out of contrast-enhanced ultrasound for evaluation of hypoxic ischemic injury in neonates and infants: preliminary findings. Ultrasound Q. https://doi.org/10.1097/RUQ.0000000000000560

    Article  PubMed  Google Scholar 

  19. Hwang M, Riggs BJ, Saade-Lemus S, Huisman TA (2018) Bedside contrast-enhanced ultrasound diagnosing cessation of cerebral circulation in a neonate: a novel bedside diagnostic tool. Neuroradiol J 31:578–580. https://doi.org/10.1177/1971400918795866

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hwang M (2019) Introduction to contrast-enhanced ultrasound of the brain in neonates and infants: current understanding and future potential. Pediatr Radiol 49:254–262. https://doi.org/10.1007/s00247-018-4270-1

    Article  PubMed  Google Scholar 

  21. Yeom KW, Lober RM, Alexander A, Cheshier SH, Edwards MSB (2014) Hydrocephalus decreases arterial spin-labeled cerebral perfusion. AJNR Am J Neuroradiol 35:1433–1439. https://doi.org/10.3174/ajnr.A3891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Z, Hwang M, Kilbaugh TJ, Sridharan A, Katz J (2022) Cerebral microcirculation mapped by echo particle tracking velocimetry quantifies the intracranial pressure and detects ischemia. Nat Commun 13:666. https://doi.org/10.1038/s41467-022-28298-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sidhu PS, Cantisani V, Deganello A, Dietrich CF, Duran C, Franke D et al (2017) Role of contrast-enhanced ultrasound (CEUS) in paediatric practice: an EFSUMB position statement. Ultraschall Med 38:33–43. https://doi.org/10.1055/s-0042-110394

    Article  PubMed  Google Scholar 

  24. Ntoulia A, Anupindi SA, Back SJ, Didier RA, Hwang M, Johnson AM et al (2021) Contrast-enhanced ultrasound: a comprehensive review of safety in children. Pediatr Radiol 51:2161–2180. https://doi.org/10.1007/s00247-021-05223-4

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Lydia Sheldon, M.S. Ed., medical writer at Children’s Hospital of Philadelphia, Department of Radiology, for editing this manuscript and Brittany Bennett, M.A., medical illustrator at Children’s Hospital of Philadelphia, Department of Radiology, for providing Fig. 1.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misun Hwang.

Ethics declarations

Conflict of Interest

The author reports no disclosures relevant to the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Videoclip. A 1-year-old boy with normal brain underwent transtemporal CEUS. This clip represents the midbrain and the perimesencephalic region in the axial plane during the wash-in phase (first 30 seconds after contrast injection). There is avid enhancement of the perimesencephalic vessels; a grayscale clip is shown on the right for comparison. (MP4 5260 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, M., Tierradentro-Garcia, L.O. A concise guide to transtemporal contrast-enhanced ultrasound in children. J Ultrasound 26, 229–237 (2023). https://doi.org/10.1007/s40477-022-00690-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40477-022-00690-3

Keywords

Navigation