Skip to main content

Advertisement

Log in

Exploring and Mitigating Plague for One Health Purposes

  • Emerging Vector Borne Diseases in the U.S. (JK Peterson, Section Editor)
  • Published:
Current Tropical Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In 2020, the Appropriations Committee for the U.S. House of Representatives directed the CDC to develop a national One Health framework to combat zoonotic diseases, including sylvatic plague, which is caused by the flea-borne bacterium Yersinia pestis. This review builds upon that multisectoral objective. We aim to increase awareness of Y. pestis and to highlight examples of plague mitigation for One Health purposes (i.e., to achieve optimal health outcomes for people, animals, plants, and their shared environment). We draw primarily upon examples from the USA, but also discuss research from Madagascar and Uganda where relevant, as Y. pestis has emerged as a zoonotic threat in those foci.

Recent Findings

Historically, the bulk of plague research has been directed at the disease in humans. This is not surprising, given that Y. pestis is a scourge of human history. Nevertheless, the ecology of Y. pestis is inextricably linked to other mammals and fleas under natural conditions. Accumulating evidence demonstrates Y. pestis is an unrelenting threat to multiple ecosystems, where the bacterium is capable of significantly reducing native species abundance and diversity while altering competitive and trophic relationships, food web connections, and nutrient cycles. In doing so, Y. pestis transforms ecosystems, causing “shifting baselines syndrome” in humans, where there is a gradual shift in the accepted norms for the condition of the natural environment. Eradication of Y. pestis in nature is difficult to impossible, but effective mitigation is achievable; we discuss flea vector control and One Health implications in this context.

Summary

There is an acute need to rapidly expand research on Y. pestis, across multiple host and flea species and varied ecosystems of the Western US and abroad, for human and environmental health purposes. The fate of many wildlife species hangs in the balance, and the implications for humans are profound in some regions. Collaborative multisectoral research is needed to define the scope of the problem in each epidemiological context and to identify, refine, and implement appropriate and effective mitigation practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sekamatte M, Krishnasamy V, Bulage L, Kihembo C, Nantima N, Monje F, et al. Multisectoral prioritization of zoonotic diseases in Uganda, 2017: a One Health perspective. PLoS ONE. 2018;13(5):e0196799.

    Article  Google Scholar 

  2. World Health Organization. Inter-regional meeting on prevention and control of plague. Antananarivo, Madagascar, 1–11 April 2006. WHO/HSE/EPR/2008.3, Geneva, 2006.

  3. Chivian E, Bernstein AS. Embedded in nature: human health and biodiversity. Environ Health Perspect. 2004;112(1):A12–3.

    Article  Google Scholar 

  4. Hinnebusch BJ, Jarrett CO, Bland DM. Molecular and genetic mechanisms that mediate transmission of Yersinia pestis by fleas. Biomolecules. 2021. https://doi.org/10.3390/biom11020210.

    Article  Google Scholar 

  5. Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Carniel E. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci. 1999;96(24):14043–8.

    Article  CAS  Google Scholar 

  6. Gage KL, Kosoy MY. Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol. 2005;50:505–28.

    Article  CAS  Google Scholar 

  7. Vallès X, Stenseth NC, Demeure C, Horby P, Mead PS, Cabanillas O, et al. Human plague: an old scourge that needs new answers. PLoS Negl Trop Dis. 2020;14(8):e0008251.

    Article  Google Scholar 

  8. Neerinckx S, Bertherat E, Leirs H. Human plague occurrences in Africa: an overview from 1877 to 2008. Trans R Soc Trop Med Hyg. 2010;104(2):97–103.

    Article  Google Scholar 

  9. Bertherat E. Plague around the world, 2010–2015/La peste a travers le monde: 2010–2015. Wkly Epidemiol Rec. 2016;91(8):89–94.

    Google Scholar 

  10. Eskey CRHV. Plague in the western part of the United States. Washington, DC: US Government Printing Office; 1940.

    Google Scholar 

  11. Pollitzer R. A review of recent literature on plague. Bull World Health Organ. 1960;23(2–3):313–400.

    CAS  Google Scholar 

  12. Link VB. Plague in the United States of America. Public Health Rep. 1955;70(3):335–6.

    Google Scholar 

  13. Wherry WB. Plague among the ground squirrels of California. J Infect Dis. 1908:485–506

  14. McCoy GW. Plague among ground squirrels in America. Epidemiol Infect. 1910;10(4):589–601.

    Article  CAS  Google Scholar 

  15. Poland JD, Barnes AM. Plague. In: Steele JF, editor. CRC handbook series in zoonoses, section A: bacterial, rickettsial, and mycotic diseases. CRC Press, Boca Raton: Florida; 1979. p. 515–97.

    Google Scholar 

  16. Eisen RJ, Eisen L, Gage KL. Studies of vector competency and efficiency of North American fleas for Yersinia pestis: state of the field and future research needs. J Med Entomol. 2009;46(4):737–44.

    Article  Google Scholar 

  17. Eisen RJ, Borchert JN, Mpanga JT, Atiku LA, MacMillan K, Boegler KA, et al. Flea diversity as an element for persistence of plague bacteria in an East African plague focus. PLoS ONE. 2012;7(4):e35598.

    Article  CAS  Google Scholar 

  18. Eads DA, Biggins DE. Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America. Conserv Biol. 2015;29(4):1086–93.

    Article  Google Scholar 

  19. Adjemian JZ, Foley P, Gage KL, Foley JE. Initiation and spread of traveling waves of plague, Yersinia pestis, in the Western United States. Am J Trop Med Hyg. 2007;76(2):365–75.

    Article  Google Scholar 

  20. Nakazawa Y, Williams R, Peterson AT, Mead P, Staples E, Gage KL. Climate change effects on plague and tularemia in the United States. Vector Borne Zoonotic Dis. 2007;7(4):529–40.

    Article  Google Scholar 

  21. Mize EL, Britten HB. Detections of Yersinia pestis east of the known distribution of active plague in the United States. Vector Borne Zoonotic Dis. 2016;16(2):88–95.

    Article  Google Scholar 

  22. Barbieri R, Signoli M, Chevé D, Costedoat C, Tzortzis S, Aboudharam G, et al. Yersinia pestis: the natural history of plague. Clin Microbiol Rev. 2020;34(1):e00044-e119.

    Article  Google Scholar 

  23. Carlson CJ, Bevins SN, Schmid BV. Plague risk in the Western United States over seven decades of environmental change. Glob Chang Biol. 2022;28(3):753–69.

    Article  CAS  Google Scholar 

  24. Chanteau S, Ratsifasoamanana L, Rasoamanana B, Rahalison L, Randriambelosoa J, Roux J, et al. Plague, a reemerging disease in Madagascar. Emerg Infect Dis. 1998;4(1):101–4.

    Article  CAS  Google Scholar 

  25. Elton CS. The ecology of invasions by animals and plants. London: Methuen; 1958.

    Book  Google Scholar 

  26. Kugeler KJ, Staples JE, Hinckley AF, Gage KL, Mead PS. Epidemiology of human plague in the United States, 1900–2012. Emerg Infect Dis. 2015;21(1):16–22.

    Article  CAS  Google Scholar 

  27. Forrester JD, Apangu T, Griffith K, Acayo S, Yockey B, Kaggwa J, et al. Patterns of human plague in Uganda, 2008–2016. Emerg Infect Dis. 2017;23(9):1517–21.

    Article  Google Scholar 

  28. Dennis DT, Gage KL, Gratz NG, Poland JD, Tikhomirov E, World Health Organization. Plague manual: epidemiology, distribution, surveillance and control. World Health Organization, WHO/CDS/CSR/EDC/99.2; 1999.

  29. Nelson CA, Meaney-Delman D, Fleck-Derderian S, Cooley KM, Yu PA, Mead PS. Antimicrobial treatment and prophylaxis of plague: recommendations for naturally acquired infections and bioterrorism response. MMWR Recomm Rep. 2021;70(3):1–27.

    Article  Google Scholar 

  30. Galimand M, Guiyoule A, Gerbaud G, Rasoamanana B, Chanteau S, Carniel E, et al. Multidrug resistance in Yersinia pestis mediated by a transferable plasmid. New England J Med. 1997;337(10):677–81.

    Article  CAS  Google Scholar 

  31. Guiyoule A, Gerbaud G, Buchrieser C, Galimand M, Rahalison L, Chanteau S, et al. Transferable plasmid-mediated resistance to streptomycin in a clinical isolate of Yersinia pestis. Emerg Infect Dis. 2001;7(1):43–8.

    Article  CAS  Google Scholar 

  32. Welch TJ, Fricke WF, McDermott PF, White DG, Rosso M-L, Rasko DA, et al. Multiple antimicrobial resistance in plague: an emerging public health risk. PLoS ONE. 2007;2(3):e309.

    Article  Google Scholar 

  33. D’ortenzio E, Lemaître N, Brouat C, Loubet P, Sebbane F, Rajerison M, et al. Plague: bridging gaps towards better disease control. Medecine et maladies infectieuses. 2018;48(5):307–17.

    Article  Google Scholar 

  34. Barbieri R. Origin, transmission, and evolution of plague over 400 y in Europe. Proc Natl Acad Sci. 2021;118(39):e2114241118.

    Article  CAS  Google Scholar 

  35. Baril L, Vallès X, Stenseth NC, Rajerison M, Ratsitorahina M, Pizarro-Cerdá J, et al. Can we make human plague history? A call to action. BMJ Glob Health. 2019;4(6):e001984.

    Article  Google Scholar 

  36. Biggins DE, Kosoy MY. Influences of introduced plague on North American mammals: implications from ecology of plague in Asia. J Mammal. 2001;82(4):906–16.

    Article  Google Scholar 

  37. Pollitzer R. Plague. Geneva: World Health Organization; 1954.

    Google Scholar 

  38. Bevins SN, Chandler JC, Barrett N, Schmit BS, Wiscomb GW, Shriner SA. Plague exposure in mammalian wildlife across the Western United States. Vector Borne Zoonotic Dis. 2021;21(9):667–74.

    Article  Google Scholar 

  39. Elton CS. Plague and the regulation of numbers in wild mammals. Epidemiol Infect. 1925;24(2):138–63.

    CAS  Google Scholar 

  40. Eisen RJ, Gage KL. North American plague models of enzootic maintenance, epizootic spread, and spatial and temporal distributions. In: Carniel E, Hinnebusch BJ, editors. Yersinia: systems biology and control. Norfolk, UK: Caister Academic Press; 2012. p. 169–82.

    Google Scholar 

  41. Enscore RE, Babi N, Amatre G, Atiku L, Eisen RJ, Pepin KM, et al. The changing triad of plague in Uganda: invasive black rats (Rattus rattus), indigenous small mammals, and their fleas. J Vector Ecol. 2020;45(2):333–55.

    Article  Google Scholar 

  42. Matchett MR, Biggins DE, Carlson V, Powell B, Rocke T. Enzootic plague reduces black-footed ferret (Mustela nigripes) survival in Montana. Vector Borne Zoonotic Dis. 2010;10(1):27–35.

    Article  Google Scholar 

  43. Smith CR, Tucker JR, Wilson BA, Clover JR. Plague studies in California: a review of long-term disease activity, flea-host relationships and plague ecology in the coniferous forests of the Southern Cascades and northern Sierra Nevada mountains. J Vector Ecol. 2010;35(1):1–12.

    Article  Google Scholar 

  44. Lowell JL, Antolin MF, Andersen GL, Hu P, Stokowski RP, Gage KL. Single-nucleotide polymorphisms reveal spatial diversity among clones of Yersinia pestis during plague outbreaks in Colorado and the Western United States. Vector Borne Zoonotic Dis. 2015;15(5):291–302.

    Article  Google Scholar 

  45. Kosoy M, Reynolds P, Bai Y, Sheff K, Enscore RE, Montenieri J, et al. Small-scale die-offs in woodrats support long-term maintenance of plague in the US southwest. Vector Borne Zoonotic Dis. 2017;17(9):635–44.

    Article  Google Scholar 

  46. Vogler AJ, Andrianaivoarimanana V, Telfer S, Hall CM, Sahl JW, Hepp CM, et al. Temporal phylogeography of Yersinia pestis in Madagascar: insights into the long-term maintenance of plague. PLoS Negl Trop Dis. 2017;11(9):e0005887.

    Article  Google Scholar 

  47. Biggins DE, Godbey JL, Eads DA. Epizootic plague in prairie dogs: correlates and control with deltamethrin. Vector Borne Zoonotic Dis. 2021;21(3):172–8.

    Article  Google Scholar 

  48. Antolin MF, Gober P, Luce B, Biggins DE, Van Pelt WE, Seery DB, et al. The influence of sylvatic plague on North American wildlife at the landscape level, with special emphasis on black-footed ferret and prairie dog conservation. In: Rahm J, editor., et al., Transactions of the sixty-seventh North American wildlife and natural resources conference. Washington, DC: US Fish and Wildlife Service; 2002. p. 104–27.

    Google Scholar 

  49. Poland TM, Patel-Weynand T, Finch DM, Miniat CF, Hayes DC, Lopez VM. Invasive species in forests and rangelands of the United States: a comprehensive science synthesis for the United States forest sector. Heidelberg, Germany: Springer International Publishing; 2021. https://doi.org/10.1007/978-3-030-45367-1.

  50. Bland DM, Miarinjara A, Bosio CF, Calarco J, Hinnebusch BJ. Acquisition of yersinia murine toxin enabled Yersinia pestis to expand the range of mammalian hosts that sustain flea-borne plague. PLoS Pathog. 2021;17(10):e1009995.

    Article  CAS  Google Scholar 

  51. Lindler LE, Plano GV, Burland V, Mayhew GF, Blattner FR. Complete DNA sequence and detailed analysis of the Yersinia pestis KIM5 plasmid encoding murine toxin and capsular antigen. Infect Immun. 1998;66(12):5731–42.

    Article  CAS  Google Scholar 

  52. Hinnebusch BJ, Rudolph AE, Cherepanov P, Dixon JE, Schwan TG, Forsberg Å. Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science. 2002;296(5568):733–5.

    Article  CAS  Google Scholar 

  53. Zeppelini CG, de Almeida AMP, Cordeiro-Estrela P. Zoonoses as ecological entities: a case review of plague. PLoS Negl Trop Dis. 2016;10(10):e0004949.

    Article  Google Scholar 

  54. Biggins DE, Godbey JL, Gage KL, Carter LG, Montenieri JA. Vector control improves survival of three species of prairie dogs (Cynomys) in areas considered enzootic for plague. Vector Borne Zoonotic Dis. 2010;10(1):17–26.

    Article  Google Scholar 

  55. Gage KL, Kosoy MY. Recent trends in plague ecology. Recovery of the black-footed ferret: progress and continuing challenges. In: Roelle JE, Miller BJ, Godbey JL, Biggins DE, editors. Recovery of the black-footed ferret—progress and continuing challenges. U.S. Geological Survey Scientific Investigations Report 2005–5293; 2006. 213–231.

  56. Ramakrishnan S. Impact of enzootic plague on Neotoma mexicana in Northern New Mexico. Las Vegas, New Mexico: New Mexico Highlands University; 2017.

    Google Scholar 

  57. Goldberg AR, Conway CJ, Biggins DE. Effects of experimental flea removal and plague vaccine treatments on survival of northern Idaho ground squirrels and two coexisting sciurids. Global Ecol Conserv. 2021;26:e01489.

    Article  Google Scholar 

  58. Biggins DE, Eads DA. Prairie dogs, persistent plague, flocking fleas, and pernicious positive feedback. Front Vet Sci. 2019. https://doi.org/10.3389/fvets.2019.00075.

    Article  Google Scholar 

  59. Baltazard M. The conservation of plague in inveterate foci. J Hyg Epidemiol Microbiol Immunol. 1964;120:409–21.

    Google Scholar 

  60. Eisen RJ, Gage KL. Adaptive strategies of Yersinia pestis to persist during inter-epizootic and epizootic periods. Vet Res. 2009. https://doi.org/10.1051/vetres:2008039.

    Article  Google Scholar 

  61. Wimsatt J, Biggins DE. A review of plague persistence with special emphasis on fleas. J Vector Borne Dis. 2009;46(2):85–99.

    Google Scholar 

  62. Poland JD, Barnes AM. Current status of plague and plague control in the United States. Proceedings of the 4th Vertebrate Pest Conference. 1970; https://digitalcommons.unl.edu/vpcfour/10.

  63. Andrianaivoarimanana V, Kreppel K, Elissa N, Duplantier J-M, Carniel E, Rajerison M, et al. Understanding the persistence of plague foci in Madagascar. PLoS Negl Trop Dis. 2013;7(11):e2382.

    Article  Google Scholar 

  64. Eads DA, Matchett MR, Poje JE, Biggins DE. Comparison of flea sampling methods and Yersinia pestis detection on prairie dog colonies. Vector Borne Zoonotic Dis. 2021;21(10):753–61.

    Article  Google Scholar 

  65. Biggins DE, Ramakrishnan S, Goldberg AR, Eads DA. Black-footed ferrets and recreational shooting influence the attributes of black-tailed prairie dog burrows. West N Am Nat. 2012;72(2):158–71.

    Article  Google Scholar 

  66. Colman RE, Brinkerhoff RJ, Busch JD, Ray C, Doyle A, Sahl JW, et al. No evidence for enzootic plague within black-tailed prairie dog (Cynomys ludovicianus) populations. Integr Zool. 2021. https://doi.org/10.1111/1749-4877.12546.

    Article  Google Scholar 

  67. Rocke TE, Tripp DW, Russell RE, Abbott RC, Richgels KL, Matchett MR, et al. Sylvatic plague vaccine partially protects prairie dogs (Cynomys spp) in field trials. Ecohealth. 2017;14(3):438–50.

    Article  Google Scholar 

  68. Eads DA. Swabbing prairie dog burrows for fleas that transmit Yersinia pestis: influences on efficiency. J Med Entomol. 2017;54(5):1273–7.

    Article  Google Scholar 

  69. Matchett MR, Stanley TR, Mccollister MF, Eads DA, Boulerice JT, Biggins DE. Oral sylvatic plague vaccine does not adequately protect prairie dogs (Cynomys spp) for endangered black-footed ferret (Mustela nigripes) conservation. Vector Borne Zoonotic Dis. 2021;21(12):921–40.

    Article  Google Scholar 

  70. Biggins DE, Ramakrishnan S, Rocke TE, Williamson JL, Wimsatt J. Enzootic plague reduces survival of Mexican woodrats (Neotoma mexicana) in Colorado. Ecosphere. 2021;12(2):e03371.

    Article  Google Scholar 

  71. Hanson DA, Britten HB, Restani M, Washburn LR. High prevalence of Yersinia pestis in black-tailed prairie dog colonies during an apparent enzootic phase of sylvatic plague. Conserv Genetics. 2007;8(4):789–95.

    Article  CAS  Google Scholar 

  72. Liccioli S, Stephens T, Wilson SC, McPherson JM, Keating LM, Antonation KS, et al. Enzootic maintenance of sylvatic plague in Canada’s threatened black-tailed prairie dog ecosystem. Ecosphere. 2020;11(5):e03138.

    Article  Google Scholar 

  73. Low RB. Reports and papers on bubonic plague: an account of the progress and diffusion of plague throughout the world, 1898–1901, and of the measures employed in different countries for repression of this disease. London: HM Stationery Office; 1902.

    Google Scholar 

  74. Lehane B. The compleat flea. London: Murray; 1969.

    Google Scholar 

  75. Krasnov BR. Functional and evolutionary ecology of fleas: a model for ecological parasitology. Cambridge: Cambridge University Press; 2008.

    Book  Google Scholar 

  76. Hinnebusch BJ, Jarrett CO, Bland DM. “Fleaing” the plague: adaptations of Yersinia pestis to its insect vector that lead to transmission. Annu Rev Microbiol. 2017;71:215–32.

    Article  CAS  Google Scholar 

  77. Engelthaler DM, Gage KL. Quantities of Yersinia pestis in fleas (Siphonaptera: Pulicidae, Ceratophyllidae, and Hystrichopsyllidae) collected from areas of known or suspected plague activity. J Med Entomol. 2000;37(3):422–6.

    Article  CAS  Google Scholar 

  78. Antolin MF. Unpacking β: within-host dynamics and the evolutionary ecology of pathogen transmission. Annu Rev Ecol Evol Syst. 2008;39:415–37.

    Article  Google Scholar 

  79. Foley JE, Zipser J, Chomel B, Girvetz E, Foley P. Modeling plague persistence in host-vector communities in California. J Wildl Dis. 2007;43(3):408–24.

    Article  Google Scholar 

  80. Buhnerkempe MG, Eisen RJ, Goodell B, Gage KL, Antolin MF, Webb CT. Transmission shifts underlie variability in population responses to Yersinia pestis infection. PLoS ONE. 2011;6(7):e22498.

    Article  CAS  Google Scholar 

  81. Richgels KL, Russell RE, Bron GM, Rocke TE. Evaluation of Yersinia pestis transmission pathways for sylvatic plague in prairie dog populations in the Western US. EcoHealth. 2016;13(2):415–27.

    Article  Google Scholar 

  82. Wilkening JL, Ray C. Characterizing predictors of survival in the American pika (Ochotona princeps). J Mammal. 2016;97(5):1366–75.

    Article  Google Scholar 

  83. Eads DA, Abbott RC, Biggins DE, Rocke TE. Flea parasitism and host survival in a plague-relevant system: theoretical and conservation implications. J Wildl Dis. 2020;56(2):378–87.

    Article  Google Scholar 

  84. Eisen RJ, Bearden SW, Wilder AP, Montenieri JA, Antolin MF, Gage KL. Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics. Proc Natl Acad Sci. 2006;103(42):15380–5.

    Article  CAS  Google Scholar 

  85. Dewitte A, Bouvenot T, Pierre F, Ricard I, Pradel E, Barois N, et al. A refined model of how Yersinia pestis produces a transmissible infection in its flea vector. PLoS Pathog. 2020;16(4):e1008440.

    Article  Google Scholar 

  86. Burroughs AL. Sylvatic plague studies: the vector efficiency of nine species of fleas compared with Xenopsylla cheopis. Epidemiol Infect. 1947;45(3):371–96.

    CAS  Google Scholar 

  87. Kartman L, Prince FM, Quan SF. Studies on Pasteurella pestis in fleas VII The plague-vector efficiency of Hystrichopsylla linsdalei compared with Xenopsylla cheopis under experimental conditions. Am J Trop Med Hyg. 1958;7(3):317–22.

    Article  CAS  Google Scholar 

  88. Bosio CF, Jarrett CO, Scott DP, Fintzi J, Hinnebusch BJ. Comparison of the transmission efficiency and plague progression dynamics associated with two mechanisms by which fleas transmit Yersinia pestis. PLoS Pathog. 2020;16(12):e1009092.

    Article  CAS  Google Scholar 

  89. Eisen RJ, Wilder AP, Bearden SW, Montenieri JA, Gage KL. Early-phase transmission of Yersinia pestis by unblocked Xenopsylla cheopis (Siphonaptera: Pulicidae) is as efficient as transmission by blocked fleas. J Med Entomol. 2007;44(4):678–82.

    Article  Google Scholar 

  90. Bibikova V. Contemporary views on the interrelationships between fleas and the pathogens of human and animal diseases. Annu Rev Entomol. 1977;22(1):23–32.

    Article  CAS  Google Scholar 

  91. Eisen RJ, Lowell JL, Montenieri JA, Bearden SW, Gage KL. Temporal dynamics of early-phase transmission of Yersinia pestis by unblocked fleas: secondary infectious feeds prolong efficient transmission by Oropsylla montana (Siphonaptera: Ceratophyllidae). J Med Entomol. 2007;44(4):672–7.

    Article  Google Scholar 

  92. Bacot AW, Martin CJ. LXVII Observations on the mechanism of the transmission of plague by fleas. J Hyg. 1914;13:423–39.

    CAS  Google Scholar 

  93. Hinnebusch BJ, Bland DM, Bosio CF, Jarrett CO. Comparative ability of Oropsylla montana and Xenopsylla cheopis fleas to transmit Yersinia pestis by two different mechanisms. PLoS Negl Trop Dis. 2017;11(1):e0005276.

    Article  Google Scholar 

  94. Eisen RJ, Dennis DT, Gage KL. The role of early-phase transmission in the spread of Yersinia pestis. J Med Entomol. 2015;52(6):1183–92.

    Article  CAS  Google Scholar 

  95. Bland DM, Jarrett CO, Bosio CF, Hinnebusch BJ. Infectious blood source alters early foregut infection and regurgitative transmission of Yersinia pestis by rodent fleas. PLoS Pathog. 2018;14(1):e1006859.

    Article  Google Scholar 

  96. Lorange EA, Race BL, Sebbane F, Joseph HB. Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis. J Infect Dis. 2005;191(11):1907–12.

    Article  Google Scholar 

  97. Eisen RJ, Vetter SM, Holmes JL, Bearden SW, Montenieri JA, Gage KL. Source of host blood affects prevalence of infection and bacterial loads of Yersinia pestis in fleas. J Med Entomol. 2008;45(5):933–8.

    Article  Google Scholar 

  98. Boegler KA, Graham CB, Johnson TL, Montenieri JA, Eisen RJ. Infection prevalence, bacterial loads, and transmission efficiency in Oropsylla montana (Siphonaptera: Ceratophyllidae) one day after exposure to varying concentrations of Yersinia pestis in blood. J Med Entomol. 2016;53(3):674–80.

    Article  CAS  Google Scholar 

  99. Hinnebusch BJ. The evolution of flea-borne transmission in Yersinia pestis. Curr Issues Mol Biol. 2005;7(2):197–212.

    CAS  Google Scholar 

  100. Perry RD, Fetherston JD. Yersinia pestis: etiologic agent of plague. Clin Microbiol Rev. 1997;10(1):35–66.

    Article  CAS  Google Scholar 

  101. Griffin KA, Martin DJ, Rosen LE, Sirochman MA, Walsh DP, Wolfe LL, et al. Detection of Yersinia pestis DNA in prairie dog–associated fleas by polymerase chain reaction assay of purified DNA. J Wildl Dis. 2010;46(2):636–43.

    Article  CAS  Google Scholar 

  102. Ayyadurai S, Houhamdi L, Lepidi H, Nappez C, Raoult D, Drancourt M. Long-term persistence of virulent Yersinia pestis in soil. Microbiol. 2008;154(9):2865–71.

    Article  CAS  Google Scholar 

  103. Easterday WR, Kausrud KL, Star B, Heier L, Haley BJ, Ageyev V, et al. An additional step in the transmission of Yersinia pestis? ISME J. 2012;6(2):231–6.

    Article  CAS  Google Scholar 

  104. Benavides-Montaño JA, Vadyvaloo V. Yersinia pestis resists predation by Acanthamoeba castellanii and exhibits prolonged intracellular survival. Appl Environ Microbiol. 2017;83(13):e00593-e617.

    Article  Google Scholar 

  105. Markman DW, Antolin MF, Bowen RA, Wheat WH, Woods M, Gonzalez-Juarrero M, et al. Yersinia pestis survival and replication in potential ameba reservoir. Emerg Infect Dis. 2018;24(2):294–302.

    Article  CAS  Google Scholar 

  106. Meyer KF. Sylvatic plague. Am J Public Health Nations Health. 1938;28(10):1153–64.

    Article  CAS  Google Scholar 

  107. Meyer K, Holdenried R, Burroughs A, Jawetz E. Sylvatic plague studies: IV Inapparent, latent sylvatic plague in ground squirrels in central California. J Infect Dis. 1943;73(2):144–57.

    Article  Google Scholar 

  108. Dayton PK, Tegner MJ, Edwards PB, Riser KL. Sliding baselines, ghosts, and reduced expectations in kelp forest communities. Ecol Appl. 1998;8(2):309–22.

    Article  Google Scholar 

  109. Pauly D. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol Evol. 1995;10(10):430.

    Article  CAS  Google Scholar 

  110. Klein ES, Thurstan RH. Acknowledging long-term ecological change: the problem of shifting baselines. In: Schwerdtner Máñez K, Poulsen B, editors. Perspectives on oceans past. Dordrecht: Springer; 2016. p. 11–29.

    Google Scholar 

  111. Forrest S. Getting the story right: a response to Vermeire and colleagues. Bioscience. 2005;55(6):526–30.

    Article  Google Scholar 

  112. Eskey CR, Haas VH. Plague in the western part of the United States: infection in rodents, experimental transmission by fleas, and inoculation tests for infection. Public Health Rep. 1939:1467–81.

  113. Biggins DE, Sidle JG, Seery DB, Ernst AE, Hoogland J. Estimating the abundance of prairie dogs. In: Hoogland JL, editor. Conservation of the black-tailed prairie dog: saving North America’s western grasslands. Washington, DC: Island Press; 2006. p. 94–107.

    Google Scholar 

  114. Hoogland JL. The black-tailed prairie dog: social life of a burrowing mammal. University of Chicago Press; 1995.

  115. Slobodchikoff CN, Perla BS, Verdolin JL. Prairie dogs: communication and community in an animal society. Harvard University Press; 2009.

  116. Russell RE, Tripp DW, Rocke TE. Differential plague susceptibility in species and populations of prairie dogs. Ecol Evol. 2019;9(20):11962–71.

    Article  Google Scholar 

  117. Cully JF Jr, Williams ES. Interspecific comparisons of sylvatic plague in prairie dogs. J Mammal. 2001;82(4):894–905.

    Article  Google Scholar 

  118. Davis S, Begon M, De Bruyn L, Ageyev VS, Klassovskiy NL, Pole SB, et al. Predictive thresholds for plague in Kazakhstan. Science. 2004;304(5671):736–8.

    Article  CAS  Google Scholar 

  119. Schmid B, Jesse M, Wilschut L, Viljugrein H, Heesterbeek J. Local persistence and extinction of plague in a metapopulation of great gerbil burrows. Kazakhstan Epidemics. 2012;4(4):211–8.

    Article  CAS  Google Scholar 

  120. Fitzgerald JP. The ecology of plague in Gunnison’s prairie dogs and suggestions for the recovery of black-footed ferrets. In: Oldemeyer JL BD, Miller BJ, Crete R, editors. Proceedings of the symposium on the management of prairie dog complexes for the reintroduction of the black-footed ferret. Biological Report 13. Washington, DC: US Fish and Wildlife Service; 1993. 50–9.

  121. George DB, Webb CT, Pepin KM, Savage LT, Antolin MF. Persistence of black-tailed prairie-dog populations affected by plague in northern Colorado. USA Ecology. 2013;94(7):1572–83.

    Article  Google Scholar 

  122. Shoemaker KT, Lacy RC, Verant ML, Brook BW, Livieri TM, Miller PS, et al. Effects of prey metapopulation structure on the viability of black-footed ferrets in plague-impacted landscapes: a metamodelling approach. J Appl Ecol. 2014;51(3):735–45.

    Article  Google Scholar 

  123. Lomolino MV, Smith GA, Vidal V. Long-term persistence of prairie dog towns: insights for designing networks of prairie reserves. Biol Conserv. 2004;115(1):111–20.

    Article  Google Scholar 

  124. Antolin M, Savage L, Eisen R. Landscape features influence genetic structure of black-tailed prairie dogs (Cynomys ludovicianus). Landsc Ecol. 2006;21(6):867–75.

    Article  Google Scholar 

  125. McDonald LL, Stanley TR, Otis DL, Biggins DE, Stevens PD, Koprowski JL, et al. Recommended methods for range-wide monitoring of prairie dogs in the United States. U.S. Geological Survey Scientific Investigations Report 2011–5063.

  126. Hanski IA, Gaggiotti OE. Ecology, genetics and evolution of metapopulations. Academic Press; 2004.

  127. Gage KL. Factors affecting the spread and maintenance of plague. In: de Almeida AMP, Leal NC. Advances in Yersinia research. Advances in Experimental Medicine and Biology 954. New York: Springer Science. 2012; 79–94.

  128. Stapp P, Antolin MF, Ball M. Patterns of extinction in prairie dog metapopulations: plague outbreaks follow El Niño events. Front Ecol Environ. 2004;2(5):235–40.

    Google Scholar 

  129. Savage LT, Reich RM, Hartley LM, Stapp P, Antolin MF. Climate, soils, and connectivity predict plague epizootics in black-tailed prairie dogs (Cynomys ludovicianus). Ecol Appl. 2011;21(8):2933–43.

    Article  Google Scholar 

  130. Keuler KM, Bron GM, Griebel R, Richgels KL. An invasive disease, sylvatic plague, increases fragmentation of black-tailed prairie dog (Cynomys ludovicianus) colonies. PLoS ONE. 2020;15(7):e0235907.

    Article  CAS  Google Scholar 

  131. Collinge SK, Johnson WC, Ray C, Matchett R, Grensten J, Cully JF Jr, et al. Landscape structure and plague occurrence in black-tailed prairie dogs on grasslands of the Western USA. Landsc Ecol. 2005;20(8):941–55.

    Article  Google Scholar 

  132. Cully JF Jr, Johnson TL, Collinge SK, Ray C. Disease limits populations: plague and black-tailed prairie dogs. Vector Borne Zoonotic Dis. 2010;10(1):7–15.

    Article  Google Scholar 

  133. Hartley LM, Detling JK, Savage LT. Introduced plague lessens the effects of an herbivorous rodent on grassland vegetation. J Appl Ecol. 2009;46(4):861–9.

    Article  Google Scholar 

  134. Duchardt CJ, Porensky LM, Pearse IS. Direct and indirect effects of a keystone engineer on a shrubland-prairie food web. Ecology. 2021;102(1):e03195.

    Article  Google Scholar 

  135. Cully JF. Plague, prairie dogs, and black-footed ferrets. In: Oldemeyer J, Biggins, DE, Miller, BJ, Crete, R, editor. Proceedings of the symposium on the management of prairie dog complexes for the reintroduction of the black-footed ferret. Biological Report 13. Washington, DC: US Fish and Wildlife Service. 1993; 38–49

  136. Thomas R, Barnes A, Quan T, Beard M, Carter L, Hopla C. Susceptibility to Yersinia pestis in the northern grasshopper mouse (Onychomys leucogaster). J Wildl Dis. 1988;24(2):327–33.

    Article  CAS  Google Scholar 

  137. Rocke TE, Williamson J, Cobble KR, Busch JD, Antolin MF, Wagner DM. Resistance to plague among black-tailed prairie dog populations. Vector Borne Zoonotic Dis. 2012;12(2):111–6.

    Article  Google Scholar 

  138. Busch JD, Van Andel R, Stone NE, Cobble KR, Nottingham R, Lee J, et al. The innate immune response may be important for surviving plague in wild Gunnison’s prairie dogs. J Wildl Dis. 2013;49(4):920–31.

    Article  Google Scholar 

  139. Wilschut LI, Laudisoit A, Hughes NK, Addink EA, de Jong SM, Heesterbeek HA, et al. Spatial distribution patterns of plague hosts: point pattern analysis of the burrows of great gerbils in Kazakhstan. J Biogeogr. 2015;42(7):1281–92.

    Article  Google Scholar 

  140. Eads DA, Jaronski ST, Biggins DE, Wimsatt J. Insect pathogenic fungi for biocontrol of plague vector fleas: a review. J Integr Pest Manag. 2021;12(1):30:1–10.

  141. Borchert JN, Mach JJ, Linder TJ, Angualia S. Invasive rats and bubonic plague in northwest Uganda. In: Witmer GW, Pitt WC, Fagerstone KA, editors. Managing vertebrate invasive species: proceedings of an international symposium. USDA/APHIS Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, USA. 2007; 283–93.

  142. Amatre G, Babi N, Enscore RE, Ogen-Odoi A, Atiku LA, Akol A, et al. Flea diversity and infestation prevalence on rodents in a plague-endemic region of Uganda. Am J Trop Med Hyg. 2009;81(4):718–24.

    Article  Google Scholar 

  143. Rahelinirina S, Duplantier JM, Ratovonjato J, Ramilijaona O, Ratsimba M, Rahalison L. Study on the movement of Rattus rattus and evaluation of the plague dispersion in Madagascar. Vector Borne Zoonotic Dis. 2010;10(1):77–84.

    Article  Google Scholar 

  144. Moore SM, Monaghan A, Borchert JN, Mpanga JT, Atiku LA, Boegler KA, et al. Seasonal fluctuations of small mammal and flea communities in a Ugandan plague focus: evidence to implicate Arvicanthis niloticus and Crocidura spp as key hosts in Yersinia pestis transmission. Parasit Vectors. 2015;8(1):1–15.

    Article  Google Scholar 

  145. Eads DA, Biggins DE, Gage KL. Ecology and management of plague in diverse communities of rodents and fleas. Vector Borne Zoonotic Dis. 2020;20(12):888–96.

    Article  Google Scholar 

  146. Goldberg AR, Conway CJ, Biggins DE. Flea sharing among sympatric rodent hosts: implications for potential plague effects on a threatened sciurid. Ecosphere. 2020;11(2):e03033.

    Article  Google Scholar 

  147. Eisen RJ, Atiku LA, Enscore RE, Mpanga JT, Acayo S, Mead PS, et al. Epidemiology, ecology and prevention of plague in the est Nile Region of Uganda: the value of long-term field studies. Am J Trop Med Hyg. 2021;105(1):18–23.

    Article  Google Scholar 

  148. Davis RM, Smith RT, Madon MB, Sitko-Cleugh E. Flea, rodent, and plague ecology at Chuchupate campground, Ventura County. California J Vector Ecol. 2002;27:107–27.

    Google Scholar 

  149. Danforth M, Novak M, Petersen J, Mead P, Kingry L, Weinburke M, et al. Investigation of and response to 2 plague cases, Yosemite National Park, California, USA, 2015. Emerg Infect Dis. 2016;22(12):2045–53.

    Article  Google Scholar 

  150. Boegler KA, Atiku LA, Enscore RE, Apangu T, Mpanga JT, Acayo S, et al. Rat fall surveillance coupled with vector control and community education as a plague prevention strategy in the West Nile Region. Uganda Am J Trop Med Hyg. 2018;98(1):238–47.

    Article  Google Scholar 

  151. Eisen RJ, MacMillan K, Atiku LA, Mpanga JT, Zielinski-Gutierrez E, Graham CB, et al. Identification of risk factors for plague in the West Nile region of Uganda. Am J Trop Med Hyg. 2014;90(6):1047–58.

    Article  Google Scholar 

  152. Kugeler KJ, Apangu T, Forrester JD, Griffith KS, Candini G, Abaru J, et al. Knowledge and practices related to plague in an endemic area of Uganda. Int J Infect Dis. 2017;64:80–4.

    Article  Google Scholar 

  153. Buttke DE, Decker DJ, Wild MA. The role of one health in wildlife conservation: a challenge and opportunity. J Wildl Dis. 2015;51(1):1–8.

    Article  Google Scholar 

  154. Enscore RE, Bai Y, Osikowicz LM, Sexton C, O’Leary DR. Evaluation of a liquid carbaryl formulation to control burrow fleas following a die-off of black-tailed prairie dogs (Cynomys ludovicianus) caused by plague (Yersinia pestis) in Converse County. Wyoming J Vector Ecol. 2021;46(2):230–2.

    Google Scholar 

  155. Jones SD, Atshabar B, Schmid BV, Zuk M, Amramina A, Stenseth NC. Living with plague: lessons from the Soviet Union’s antiplague system. Proc Natl Acad Sci. 2019;116(19):9155–63.

    Article  CAS  Google Scholar 

  156. Eisen L, Eisen RJ. Using geographic information systems and decision support systems for the prediction, prevention, and control of vector-borne diseases. Annu Rev Entomol. 2011;56:41–61.

    Article  CAS  Google Scholar 

  157. Eisen RJ, Enscore RE, Atiku LA, Zielinski-Gutierrez E, Mpanga JT, Kajik E, et al. Evidence that rodent control strategies ought to be improved to enhance food security and reduce the risk of rodent-borne illnesses within subsistence farming villages in the plague-endemic West Nile region. Uganda Int J Pest Manag. 2013;59(4):259–70.

    Article  Google Scholar 

  158. Eisen RJ, Atiku LA, Boegler KA, Mpanga JT, Enscore RE, MacMillan K, et al. An evaluation of removal trapping to control rodents inside homes in a plague-endemic region of rural northwestern Uganda. Vector Borne Zoonotic Dis. 2018;18(9):458–63.

    Article  Google Scholar 

  159. Rahelinirina S, Scobie K, Ramasindrazana B, Andrianaivoarimanana V, Rasoamalala F, Randriantseheno LN, et al. Rodent control to fight plague: field assessment of methods based on rat density reduction. Integr Zool. 2021. https://doi.org/10.1111/1749-4877.12529.

    Article  Google Scholar 

  160. Heath DG, Anderson GW Jr, Mauro JM, Welkos SL, Andrews GP, Adamovicz J, et al. Protection against experimental bubonic and pneumonic plague by a recombinant capsular F1-V antigen fusion protein vaccine. Vaccine. 1998;16(11–12):1131–7.

    Article  CAS  Google Scholar 

  161. Rocke TE, Smith S, Marinari P, Kreeger J, Enama JT, Powell BS. Vaccination with F1-V fusion protein protects black-footed ferrets (Mustela nigripes) against plague upon oral challenge with Yersinia pestis. J Wildl Dis. 2008;44(1):1–7.

    Article  CAS  Google Scholar 

  162. Phillips P, Livieri TM, Swanson BJ. Genetic signature of disease epizootic and reintroduction history in an endangered carnivore. J Mammal. 2020;101(3):779–89.

    Article  Google Scholar 

  163. Tripp DW, Rocke TE, Runge JP, Abbott RC, Miller MW. Burrow dusting or oral vaccination prevents plague-associated prairie dog colony collapse. EcoHealth. 2017;14(3):451–62.

    Article  Google Scholar 

  164. Tripp DW, Rocke TE, Streich SP, Brown NL, Fernandez JR-R, Miller MW. Season and application rates affect vaccine bait consumption by prairie dogs in Colorado and Utah, USA. J Wildl Dis. 2014;50(2):224–34.

    Article  Google Scholar 

  165. Bron GM, Smith SR, Williamson JD, Tripp DW, Rocke TE. Moderate susceptibility to subcutaneous plague (Yersinia pestis) challenge in vaccine-treated and untreated Sonoran deer mice (Peromyscus maniculatus sonoriensis) and northern grasshopper mice (Onychomys leucogaster). J Wildl Dis. 2021;57(3):632–6.

    Article  Google Scholar 

  166. Danforth M, Tucker J, Novak M. The deer mouse (Peromyscus maniculatus) as an enzootic reservoir of plague in California. EcoHealth. 2018;15(3):566–76.

    Article  Google Scholar 

  167. Abbott RC, Russell RE, Richgels KL, Tripp DW, Matchett MR, Biggins DE, et al. Factors influencing uptake of sylvatic plague vaccine baits by prairie dogs. EcoHealth. 2018;15(1):12–22.

    Article  Google Scholar 

  168. Russell RE, Abbott RC, Tripp DW, Rocke TE. Local factors associated with on-host flea distributions on prairie dog colonies. Ecol Evol. 2018;8(17):8951–72.

    Article  Google Scholar 

  169. Dye C. The analysis of parasite transmission by bloodsucking insects. Annu Rev Entomol. 1992;37(1):1–19.

    Article  CAS  Google Scholar 

  170. Borchert JN, Enscore RE, Eisen RJ, Atiku LA, Owor N, Acayo S, et al. Evaluation of rodent bait containing imidacloprid for the control of fleas on commensal rodents in a plague-endemic region of northwest Uganda. J Med Entomol. 2010;47(5):842–50.

    Article  Google Scholar 

  171. Miarinjara A, Rahelinirina S, Razafimahatratra NL, Girod R, Rajerison M, Boyer S. Field assessment of insecticide dusting and bait station treatment impact against rodent flea and house flea species in the Madagascar plague context. PLoS Negl Trop Dis. 2019;13(8): e0007604.

    Article  Google Scholar 

  172. Eisen RJ, Atiku LA, Mpanga JT, Enscore RE, Acayo S, Kaggwa J, et al. An evaluation of the flea index as a predictor of plague epizootics in the West Nile region of Uganda. J Med Entomol. 2020;57(3):893–900.

    Article  Google Scholar 

  173. California Department of Public Health. California compendium of plague control. https://www.cdph.ca.gov/Programs/CID/DCDC/CDPH%20Document%20Library/CAPlagueCompendium.pdf; 2021.

  174. Tripp DW, Streich SP, Sack DA, Martin DJ, Griffin KA, Miller MW. Season of deltamethrin application affects flea and plague control in white-tailed prairie dog (Cynomys leucurus) colonies, Colorado, USA. J Wildl Dis. 2016;52(3):553–61.

    Article  CAS  Google Scholar 

  175. Eads DA, Biggins DE. Plague management of prairie dog colonies: degree and duration of deltamethrin flea control. J Vector Ecol. 2019;44(1):40–7.

    Article  Google Scholar 

  176. Eads DA, Biggins DE, Bowser J, Broerman K, Livieri TM, Childers E, et al. Evaluation of five pulicides to suppress fleas on black-tailed prairie dogs encouraging long-term results with systemic 0.005% fipronil. Vector Borne Zoonotic Dis. 2019;19(6):400–6.

    Article  Google Scholar 

  177. Boyer S, Miarinjara A, Elissa N. Xenopsylla cheopis (Siphonaptera: Pulicidae) susceptibility to deltamethrin in Madagascar. PLoS ONE. 2014;9(11):e111998.

    Article  Google Scholar 

  178. Miarinjara A, Boyer S. Current perspectives on plague vector control in Madagascar: susceptibility status of Xenopsylla cheopis to 12 insecticides. PLoS Negl Trop Dis. 2016;10(2):e0004414.

    Article  Google Scholar 

  179. Eads DA, Biggins DE, Bowser J, McAllister JC, Griebel RL, Childers E, et al. Resistance to deltamethrin in prairie dog (Cynomys ludovicianus) fleas in the field and in the laboratory. J Wildl Dis. 2018;54(4):745–54.

    Article  CAS  Google Scholar 

  180. Kartman L. An insecticide-bait-box method for the control of sylvatic plague vectors. Epidemiol Infect. 1958;56(4):455–65.

    Article  CAS  Google Scholar 

  181. Tirador DF, Miller BE, Stacy J, Martin AR, Kartman L, Collins RN, et al. An emergency program to control plague. Public Health Rep. 1967;82(12):1094–100.

    Article  Google Scholar 

  182. Boegler KA, Atiku LA, Mpanga JT, Clark RJ, Delorey MJ, Gage KL, et al. Use of insecticide delivery tubes for controlling rodent-associated fleas in a plague endemic region of West Nile. Uganda J Med Entomol. 2014;51(6):1254–63.

    Article  CAS  Google Scholar 

  183. Bronson LR, Smith CR. Use of liquid deltamethrin in modified, host-targeted bait tubes for control of fleas on sciurid rodents in northern California. J Vector Ecol. 2002;27(1):55–62.

    Google Scholar 

  184. Ratovonjato J, Duchemin J, Duplantier J, Chanteau S. Xenopsylla cheopis (Siphonaptera: Xenopsyllinae), fleas in rural households in the Hautes Terres region in Madagascar: level of susceptibility to DDT, to pyrethroids and to carbamates after 50 years of chemical control. Arch Inst Pasteur Madagascar. 2000;66(1–2):9–12.

    CAS  Google Scholar 

  185. Luo Q-s, He S-y, Tian Z-m. Observation on the effect of cyhalothrin against the dissociated flea on the ground. Chinese J Vector Biol Control. 2003;14(5):364–7.

    Google Scholar 

  186. Kumar K, Sharma SK, Gill KS, Katyal R, Biswas S, Lal S. Entomological and rodent surveillance of suspected plague foci in agro-environmental and feral biotopes of a few districts in Maharashtra and Gujarat states of India. Japanese J Med Sci Biol. 1997;50(6):219–26.

    Article  CAS  Google Scholar 

  187. Karhu R, Anderson S. Effects of pyriproxyfen spray, powder, and oral bait treatments on the relative abundance of fleas (Siphonaptera: Ceratophyllidae) in black-tailed prairie dog (Rodentia: Sciuridae) towns. J Med Entomol. 2000;37(6):864–71.

    Article  CAS  Google Scholar 

  188. Davis RM, Cleugh E, Smith RT, Fritz CL. Use of a chitin synthesis inhibitor to control fleas on wild rodents important in the maintenance of plague, Yersinia pestis. California J Vector Ecol. 2008;33(2):278–84.

    Article  Google Scholar 

  189. Leirs H, Larsen K, Lodal J. Palatability and toxicity of fipronil as a systemic insecticide in a bromadiolone rodenticide bait for rat and flea control. Med Vet Entomol. 2001;15(3):299–303.

    Article  CAS  Google Scholar 

  190. Poché DM, Hartman D, Polyakova L, Poché RM. Efficacy of a fipronil bait in reducing the number of fleas (Oropsylla spp) infesting wild black-tailed prairie dogs. J Vector Ecol. 2017;42(1):171–7.

    Article  Google Scholar 

  191. Poché D, Clarke T, Tseveenjav B, Torres-Poché Z. Evaluating the use of a low dose fipronil bait in reducing black-tailed prairie dog (Cynomys ludovicianus) fleas at reduced application rates. Int J Parasitol Parasites Wildl. 2020;13:292–8.

    Article  Google Scholar 

  192. Rajonhson DM, Miarinjara A, Rahelinirina S, Rajerison M, Boyer S. Effectiveness of fipronil as a systemic control agent against Xenopsylla cheopis (Siphonaptera: Pulicidae) in Madagascar. J Med Entomol. 2017;54(2):411–7.

    CAS  Google Scholar 

  193. Eads DA, Livieri TM, Dobesh P, Childers E, Noble LE, Vasquez MC, et al. Fipronil pellets reduce flea abundance on black-tailed prairie dogs: potential tool for plague management and black-footed ferret conservation. J Wildl Dis. 2021;57(2):434–8.

    Article  Google Scholar 

  194. Franc M, Cadiergues M. Antifeeding effect of several insecticidal formulations against Ctenocephalides felis on cats. Parasite. 1998;5(1):83–6.

    Article  CAS  Google Scholar 

  195. Bass C, Schroeder I, Turberg A, Field LM, Williamson MS. Identification of the Rdl mutation in laboratory and field strains of the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). Pest Manag Sci. 2004;60(12):1157–62.

    Article  CAS  Google Scholar 

  196. Mahmoudi A, Kryštufek B, Sludsky A, Schmid BV, De Almeida AM, Lei X, et al. Plague reservoir species throughout the world. Integr Zool. 2021;16(6):820–33.

    Article  CAS  Google Scholar 

  197. Eads DA, Biggins DE, Grassel SM, Livieri TM, Licht DS. Interactions among American badgers, black-footed ferrets, and prairie dogs in the grasslands of western North America. In: Proulx G, Do Linh San E, editors. Badgers: systematics, biology, conservation and research techniques. Alberta, Canada: Alpha Wildlife Research. 2016; 198–218.

  198. Wild MA, Shenk TM, Spraker TR. Plague as a mortality factor in Canada lynx (Lynx canadensis) reintroduced to Colorado. J Wildl Dis. 2006;42(3):646–50.

    Article  Google Scholar 

  199. Kwit N, Nelson C, Kugeler K, Petersen J, Plante L, Yaglom H, et al. Human plague—United States, 2015. MMWR Morb Mortal Wkly Rep. 2015;64(33):918–9.

    Article  Google Scholar 

  200. Campbell SB, Nelson CA, Hinckley AF, Kugeler KJ. Animal exposure and human plague, United States, 1970–2017. Emerg Infect Dis. 2019;25(12):2270–3.

    Article  Google Scholar 

  201. Ray C, Collinge SK. Introducing the trophic vortex: response to Stapp. EcoHealth. 2007;4(2):122–4.

    Google Scholar 

  202. Hilborn R, Mangel M. The ecological detective. Princeton University Press; 1997.

    Google Scholar 

Download references

Acknowledgements

Many colleagues helped to shape this review. We wish to express a sincere gratitude to our colleagues for sharing their thoughts and for their efforts to better understand and manage plague for One Health purposes. We thank J. K. Peterson and J. Boulerice for the constructive reviews of the manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. The findings and conclusions in this article are those of the author(s) and do not necessarily represent the views or opinions of the California Department of Public Health, the California Health and Human Services Agency, the U.S. Fish and Wildlife Service, or the Centers for Disease Control and Prevention. This work was supported in part by the Intramural Research Program of the NIAID, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Eads.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This review article does not contain any new studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eads, D.A., Biggins, D.E., Wimsatt, J. et al. Exploring and Mitigating Plague for One Health Purposes. Curr Trop Med Rep 9, 169–184 (2022). https://doi.org/10.1007/s40475-022-00265-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40475-022-00265-6

Keywords

Navigation