Skip to main content

Advertisement

Log in

Antibody Immunity and Natural Resistance to Cryptococcosis

  • Tropical Mycoses (L Martinez, Section Editor)
  • Published:
Current Tropical Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To review recent data on the role that B cells and/or antibody-based immunity play in host defense against Cryptococcus neoformans (Cn).

Recent Findings

Cn, an encapsulated fungus, causes cryptococcal meningitis (CM). There are ~180,000 deaths per year worldwide attributed to CM, which is the most common cause of meningitis in adults with HIV in sub-Saharan Africa. HIV infection with advanced immunodeficiency is the most important predisposing risk factor for CM, highlighting the critical role that T cell-mediated immunity plays in disease prevention. However, numerous studies in the past decade demonstrate that antibody immunity also plays a role in resistance to CM. In mice, B cells reduce early dissemination from the lungs to the brain, and naïve mouse IgM can enhance fungal containment in the lungs. In concert with these findings, human studies show that patients with CM have lower IgM memory B cell levels and/or different serum profiles of Cn-binding and natural antibodies than controls.

Summary

There is sufficient evidence to support a possible role for B cells and certain antibodies in natural resistance to CM. This underscores the need for a deeper understanding of mechanisms by which natural and Cn-binding antibodies may reduce Cn virulence and protect against Cn dissemination and human CM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lazera MS, Salmito Cavalcanti MA, Londero AT, Trilles L, Nishikawa MM, Wanke B. Possible primary ecological niche of Cryptococcus neoformans. Med Mycol. 2000;38:379–83.

    CAS  PubMed  Google Scholar 

  2. Casadevall A, Perfect J. Cryptococcus neoformans. Washington DC: ASM; 1998.

    Google Scholar 

  3. Rohatgi S, Pirofski LA. Host immunity to Cryptococcus neoformans. Future Microbiol. 2015;10:565–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pirofski LA, Casadevall A. Immune-mediated damage completes the parabola: Cryptococcus neoformans pathogenesis can reflect the outcome of a weak or strong immune response. mBio. 2017;8.

  5. • Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis. 2017;17:873–81 Provides a circa 2014 estimate of the global incidence of HIV-associated cryptococcal disease, HIV incidence, ART access, and retention in care using published UNAIDS and cryptococcal prevalence data.

    PubMed  PubMed Central  Google Scholar 

  6. Shaheen AA, Somayaji R, Myers R, Mody CH. Epidemiology and trends of cryptococcosis in the United States from 2000 to 2007: a population-based study. Int J STD AIDS. 2018;29:453–60.

    PubMed  Google Scholar 

  7. Enoch DA, Yang H, Aliyu SH, Micallef C. The changing epidemiology of invasive fungal infections. Methods Mol Biol. 2017;1508:17–65.

    CAS  PubMed  Google Scholar 

  8. Monga DP, Kumar R, Mohapatra LN, Malaviya AN. Experimental cryptococcosis in normal and B-cell-deficient mice. Infect Immun. 1979;26:1–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rivera J, Casadevall A. Mouse genetic background is a major determinant of isotype-related differences for antibody-mediated protective efficacy against Cryptococcus neoformans. J Immunol. 2005;174:8017–26.

    CAS  PubMed  Google Scholar 

  10. Feldmesser M, Mednick A, Casadevall A. Antibody-mediated protection in murine Cryptococcus neoformans infection is associated with pleotrophic effects on cytokine and leukocyte responses. Infect Immun. 2002;70:1571–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Datta K, Pirofski LA. Towards a vaccine for Cryptococcus neoformans: principles and caveats. FEMS Yeast Res. 2006;6:525–36.

    CAS  PubMed  Google Scholar 

  12. Casadevall A, Pirofski L. Insights into mechanisms of antibody-mediated immunity from studies with Cryptococcus neoformans. Curr Mol Med. 2005;5:421–33.

    CAS  PubMed  Google Scholar 

  13. Aguirre KM, Johnson LL. A role for B cells in resistance to Cryptococcus neoformans in mice. Infect Immun. 1997;65:525–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Moir S, Fauci AS. B cells in HIV infection and disease. Nat Rev Immunol. 2009;9:235–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lane HC, Shelhamer JH, Mostowski HS, Fauci AS. Human monoclonal anti-keyhole limpet hemocyanin antibody-secreting hybridoma produced from peripheral blood B lymphocytes of a keyhole limpet hemocyanin-immune individual. J Exp Med. 1982;155:333–8.

    CAS  PubMed  Google Scholar 

  16. •• Dufaud C, Rivera J, Rohatgi S, Pirofski LA. Naive B cells reduce fungal dissemination in Cryptococcus neoformans infected Rag1(-/-) mice. Virulence. 2018;9:173–84 This article establishes that B cells are able to reduce early Cn dissemination in mice and suggest that normal mouse IgM may be a key mediator of early antifungal immunity in the lungs.

    CAS  PubMed  Google Scholar 

  17. Rohatgi S, Pirofski LA. Molecular characterization of the early B cell response to pulmonary Cryptococcus neoformans infection. J Immunol. 2012;189:5820–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. • Subramaniam KS, Datta K, Quintero E, Manix C, Marks MS, Pirofski LA. The absence of serum IgM enhances the susceptibility of mice to pulmonary challenge with Cryptococcus neoformans. J Immunol. 2010;184:5755–67 This paper shows that presence of normal mouse IgM reduces Cn dissemination to the brain, promotes containment of Cn in the lungs, and enhances the phagocytic capacity of alveolar macrophages.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. • Szymczak WA, Davis MJ, Lundy SK, Dufaud C, Olszewski M, Pirofski LA. X-linked immunodeficient mice exhibit enhanced susceptibility to Cryptococcus neoformans Infection. mBio. 2013;4:e00265–13 This paper shows that XID mice, which lack B-1 cells and IgM, exhibit a dissemination phenotype whereby Cn disseminates from lungs to brain, and suggests that absence of IgM impairs Cn phagocytosis and allows Cn enlargment in the lungs.

    PubMed  PubMed Central  Google Scholar 

  20. Rawlings DJ, Saffran DC, Tsukada S, Largaespada DA, Grimaldi JC, Cohen L, et al. Mutation of unique region of Bruton’s tyrosine kinase in immunodeficient XID mice. Science. 1993;261:358–61.

    CAS  PubMed  Google Scholar 

  21. Trevijano-Contador N, Rueda C, Zaragoza O. Fungal morphogenetic changes inside the mammalian host. Semin Cell Dev Biol. 2016;57:100–9.

    PubMed  Google Scholar 

  22. • Trevijano-Contador N, de Oliveira HC, Garcia-Rodas R, Rossi SA, Llorente I, Zaballos A, et al. Cryptococcus neoformans can form titan-like cells in vitro in response to multiple signals. PLoS Pathog. 2018;14:e1007007 Provides a new method to investigate Titan cell formation in vitro. This method will make it posible to examine the effect of antibodies on Cn Titan cell formation.

    PubMed  PubMed Central  Google Scholar 

  23. Zaragoza O, Garcia-Rodas R, Nosanchuk JD, Cuenca-Estrella M, Rodriguez-Tudela JL, Casadevall A. Fungal cell gigantism during mammalian infection. PLoS Pathog. 2010;6:e1000945.

    PubMed  PubMed Central  Google Scholar 

  24. Okagaki LH, Wang Y, Ballou ER, O'Meara TR, Bahn YS, Alspaugh JA, et al. Cryptococcal titan cell formation is regulated by G-protein signaling in response to multiple stimuli. Eukaryot Cell. 2011;10:1306–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rapaka RR, Ricks DM, Alcorn JF, Chen K, Khader SA, Zheng M, et al. Conserved natural IgM antibodies mediate innate and adaptive immunity against the opportunistic fungus Pneumocystis murina. J Exp Med. 2010;207:2907–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. • Rachini A, Pietrella D, Lupo P, Torosantucci A, Chiani P, Bromuro C, et al. An anti-beta-glucan monoclonal antibody inhibits growth and capsule formation of Cryptococcus neoformans in vitro and exerts therapeutic, anticryptococcal activity in vivo. Infect Immun. 2007;75:5085–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Fleuridor R, Lyles RH, Pirofski L. Quantitative and qualitative differences in the serum antibody profiles of human immunodeficiency virus-infected persons with and without Cryptococcus neoformans meningitis. J Infect Dis. 1999;180:1526–35.

    CAS  PubMed  Google Scholar 

  28. Subramaniam K, French N, Pirofski LA. Cryptococcus neoformans-reactive and total immunoglobulin profiles of human immunodeficiency virus-infected and uninfected Ugandans. Clin Diagn Lab Immunol. 2005;12:1168–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Deshaw M, Pirofski LA. Antibodies to the Cryptococcus neoformans capsular glucuronoxylomannan are ubiquitous in serum from HIV+ and HIV- individuals. Clin Exp Immunol. 1995;99:425–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Abadi J, Pirofski L. Antibodies reactive with the cryptococcal capsular polysaccharide glucuronoxylomannan are present in sera from children with and without human immunodeficiency virus infection. J Infect Dis. 1999;180:915–9.

    CAS  PubMed  Google Scholar 

  31. •• Subramaniam K, Metzger B, Hanau LH, Guh A, Rucker L, Badri S, et al. IgM(+) memory B cell expression predicts HIV-associated cryptococcosis status. J Infect Dis. 2009;200:244–51 This paper shows that in a prospective and a retrospective cohort, levels of IgM memory B cells were lower in HIV-infected persons with than without a history of CM, suggesting the hypothesis that reduced levels of IgM memory B cells may portend risk for development of CM.

    PubMed  PubMed Central  Google Scholar 

  32. Jalali Z, Ng L, Singh N, Pirofski LA. Antibody response to Cryptococcus neoformans capsular polysaccharide glucuronoxylomannan in patients after solid-organ transplantation. Clin Vaccine Immunol. 2006;13:740–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Carsetti R, Rosado MM, Wardmann H. Peripheral development of B cells in mouse and man. Immunol Rev. 2004;197:179–91.

    PubMed  Google Scholar 

  34. •• Rohatgi S, Nakouzi A, Carreno LJ, Slosar-Cheah M, Kuniholm MH, Wang T, et al. Antibody and B cell subset perturbations in human immunodeficiency virus-uninfected patients with cryptococcosis. Open Forum Infect Dis. 2018;5:ofx255.

    PubMed  Google Scholar 

  35. Jo EK, Kim HS, Lee MY, Iseki M, Lee JH, Song CH, et al. X-linked hyper-IgM syndrome associated with Cryptosporidium parvum and Cryptococcus neoformans infections: the first case with molecular diagnosis in Korea. J Korean Med Sci. 2002;17:116–20.

    PubMed  PubMed Central  Google Scholar 

  36. Vetrie D, Vorechovsky I, Sideras P, Holland J, Davies A, Flinter F, et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature. 1993;361:226–33.

    CAS  PubMed  Google Scholar 

  37. Arthurs B, Wunderle K, Hsu M, Kim S. Invasive aspergillosis related to ibrutinib therapy for chronic lymphocytic leukemia. Respir Med Case Rep. 2017;21:27–9.

    PubMed  PubMed Central  Google Scholar 

  38. Baron M, Zini JM, Challan Belval T, Vignon M, Denis B, Alanio A, et al. Fungal infections in patients treated with ibrutinib: two unusual cases of invasive aspergillosis and cryptococcal meningoencephalitis. Leuk Lymphoma. 2017;58:2981–2.

    PubMed  Google Scholar 

  39. Ruchlemer R, Ben Ami R, Lachish T. Ibrutinib for chronic lymphocytic leukemia. N Engl J Med. 2016;374:1593–4.

    PubMed  Google Scholar 

  40. Chamilos G, Lionakis MS, Kontoyiannis DP. Call for action: invasive fungal infections associated with Ibrutinib and other small molecule kinase inhibitors targeting immune signaling pathways. Clin Infect Dis. 2018;66:140–8.

    CAS  PubMed  Google Scholar 

  41. Messina JA, Maziarz EK, Spec A, Kontoyiannis DP, Perfect JR. Disseminated Cryptococcosis with brain involvement in patients with chronic lymphoid malignancies on ibrutinib. Open Forum Infect Dis. 2017;4:ofw261.

    PubMed  PubMed Central  Google Scholar 

  42. Chiani P, Bromuro C, Cassone A, Torosantucci A. Anti-beta-glucan antibodies in healthy human subjects. Vaccine. 2009;27:513–9.

    CAS  PubMed  Google Scholar 

  43. Rodrigues ML, Travassos LR, Miranda KR, Franzen AJ, Rozental S, de Souza W, et al. Human antibodies against a purified glucosylceramide from Cryptococcus neoformans inhibit cell budding and fungal growth. Infect Immun. 2000;68:7049–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. •• Yoon HA, Nakouzi A, Chang CC, Kuniholm MH, Carreno LJ, Wang T, et al. Association between plasma antibody responses and risk for Cryptococcus-associated immune reconstitution inflammatory syndrome. J Infect Dis. 2018; This study shows plasma antibody profiles differ in HIV-infected patients with and without cryptococcal immune reconstitution inflammatory syndrome (C-IRIS), and that levels of of IgM, Lam-IgM, Lam-IgG, and/or GXM-IgM are lower in patients with than without C-IRIS, suggesting these antibodies may play a role in controlling C-IRIS–associated inflammation.

  45. Hlupeni A, Nakouzi A, Wang T, Boyd KF, Makadzange TA, Ndhlovu CE, et al. Antibody responses in HIV-infected patients with advanced immunosuppression and asymptomatic cryptococcal antigenemia. Open Forum Infect Dis. 2019;6:ofy333.

    PubMed  Google Scholar 

  46. Longley N, Jarvis JN, Meintjes G, Boulle A, Cross A, Kelly N, et al. Cryptococcal antigen screening in patients initiating ART in South Africa: a prospective cohort study. Clin Infect Dis. 2016;62:581–7.

    CAS  PubMed  Google Scholar 

  47. Rhein J, Bahr NC, Morawski BM, Schutz C, Zhang Y, Finkelman M, et al. Detection of high cerebrospinal fluid levels of (1-->3)-beta-d-glucan in cryptococcal meningitis. Open Forum Infect Dis. 2014;1:ofu105.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Liise-anne Pirofski was supported in part by NIH Grant AI097096.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liise-anne Pirofski.

Ethics declarations

Conflict of Interest

Nuria Trevijano-Contador and Liise-anne Pirofski declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Tropical Mycoses

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trevijano-Contador, N., Pirofski, La. Antibody Immunity and Natural Resistance to Cryptococcosis. Curr Trop Med Rep 6, 50–54 (2019). https://doi.org/10.1007/s40475-019-00174-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40475-019-00174-1

Keywords

Navigation