Skip to main content

Advertisement

Log in

Is Developmental Coordination Disorder a Dysconnection Syndrome?

  • Motor Disorders (P Wilson, Section Editor)
  • Published:
Current Developmental Disorders Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Classical view of disconnection refers to damage in white matter connections leading to behavioral deficits on sensorimotor and cognitive tasks in brain-injured patients. A more recent conception refers to dysconnection, that means abnormal connectivity between brain regions, as found in psychiatric, neurodegenerative, and neurodevelopmental disorders. The present paper aims to explore the hypothesis that Developmental Coordination Disorder (DCD) presents a set of neural, behavioral, and cognitive signs that suggest a dysconnection syndrome.

Recent Findings

Current literature on DCD using behavioral and neuroimaging measures suggests several dysconnections (1) between hemispheres, (2) within hemispheres, (3) within the cortico-subcortical loops, and (4) in the cortico-spinal tract.

Summary

Brain dysconnections could explain the diversity of behavioral and cognitive deficits in DCD such as deficits in motor control during inter-limb rhythmic coordination and unimanual movements, deficits in motor imagery, planning and execution, and learning difficulties. Future studies using behavioral and neuroimaging measures should endeavor to map the relationship between putative dysconnections and behavioral and cognitive deficits in DCD. It will also be necessary to identify DCD-specific dysconnections compared with other neurodevelopmental disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The advantage (faster reaction time) of the ipsilateral (uncrossed) compared with the contralateral (crossed) response is larger for the left hand than the right, conferring a left-hand advantage in the crossed condition.

  2. Even if mechanisms underlying persistence of MM in the case of agenesis of the CC, one possibility is that the maturation of the CC permits to inhibit the ipsilateral corticospinal tract. In the absence on CC, the ipsilateral tract is disinhibited and MM persist [83].

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Thiebaut de Schotten M, Dell'Acqua F, Ratiu P, Leslie A, Howells H, Cabanis E, et al. From Phineas gage and monsieur Leborgne to HM: revisiting disconnection syndromes. Cereb Cortex. 2015;25(12):4812–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Catani M, Ffytche DH. The rises and falls of disconnection syndromes. Brain. 2005;128(10):2224–39.

    PubMed  Google Scholar 

  3. • Catani M, De Schotten MT. A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex. 2008;44(8):1105–32 This article provides a good overview of brain white matter tracts.

    PubMed  Google Scholar 

  4. Bettcher BM, Bevan C, Geschwind MD. White matter disorders in genomics, circuits, and pathways in clinical neuropsychiatry (pp. 665–684). Academic Press. 2016.

  5. Geschwind N. Disconnexion syndromes in animals and man. Brain. 1965;88(3):585–5.

    CAS  PubMed  Google Scholar 

  6. Hecaen H, Assal G. Les relations interhémisphériques et le problème de la dominance cérébrale. L'Année psychol. 1968;68(2):491–523.

    CAS  Google Scholar 

  7. Catani M, Mesulam M. What is a disconnection syndrome? Cortex. 2008;4:911–3.

    Google Scholar 

  8. Bettcher BM, Bevan C, Geschwind MD. White matter disorders. in genomics, circuits, and pathways in clinical neuropsychiatry (pp. 665–684). Academic Press. 2016.

  9. Schmahmann JD, Smith EE, Eichler FS, Filley CM. Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Annals NY Acad Sci. 2008;1142:266.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Geeraert BL, Lebel RM, Mah AC, Deoni SC, Alsop DC, Varma G, et al. A comparison of inhomogeneous magnetization transfer, myelin volume fraction, and diffusion tensor imaging measures in healthy children. Neuroimage. 2018;182:343–50.

    PubMed  Google Scholar 

  11. • Reynolds JE, Grohs MN, Dewey D, Lebel C. Global and regional white matter development in early childhood. NeuroImage. 2019;196:49–58 This article provides a good overview of development of brain white matter tracts.

    PubMed  Google Scholar 

  12. Clayden JD. Imaging connectivity: MRI and the structural networks of the brain. Funct Neurol. 2013;28(3):197–203.

    PubMed  PubMed Central  Google Scholar 

  13. • Stephan KE, Friston KJ, Frith CD. Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull. 2009;35(3):509–27 This article explains the distinction between disconnection and dysconnection.

    PubMed  PubMed Central  Google Scholar 

  14. Absher JF, Benson R. Disconnection syndromes: an overview of Geschwind’s contributions. Neurol. 1993;43:862–7.

    CAS  Google Scholar 

  15. Friston KJ, Frith CD. Schizophrenia: a disconnection syndrome. Clin Neurosci. 1995;3(2):89–97.

    CAS  PubMed  Google Scholar 

  16. Friston K, Brown HR, Siemerkus J, Stephan KE. The dysconnection hypothesis. Schizophr Res. 2016;176(2–3):83–94.

    PubMed  PubMed Central  Google Scholar 

  17. Martin E, Blais M, Albaret JM, Pariente J, Tallet J. Alteration of rhythmic unimanual tapping and anti-phase bimanual coordination in Alzheimer’s disease: a sign of inter-hemispheric disconnection? Hum Mov Sci. 2017;55:43–53.

    PubMed  Google Scholar 

  18. Sha Z, Xia M, Lin Q, Cao M, Tang Y, Xu K, et al. Meta-connectomic analysis reveals commonly disrupted functional architectures in network modules and connectors across brain disorders. Cereb Cortex. 2017;28(12):4179–94.

    Google Scholar 

  19. Rimkus CDM, Steenwijk MD, Barkhof F. Causes, effects and connectivity changes in MS-related cognitive decline. Dement neuropsychol. 2016;10(1):2–11.

    PubMed  PubMed Central  Google Scholar 

  20. Hoppenbrouwers M, Vandermosten M, Boets B. Autism as a dis- 1102 connection syndrome: a qualitative and quantitative review of dif- 1103 fusion tensor imaging studies. Res Autism Spectr Disord. 1104 2014;8(4):387–412.

  21. Njiokiktjien C. Morphologie et fonctionnement calleux dans la dyslexie. Rev Neuropsychol. 1996;6:347–67.

    Google Scholar 

  22. Démonet JF, Taylor MJ, Chaix Y. Developmental dyslexia. Lancet. 2004;363(9419):1451–60.

    PubMed  Google Scholar 

  23. Klein E, Moeller K, Willmes KF. A neural disconnection hypothesis on impaired numerical processing. Front Hum Neurosci. 2013;7:663.

    PubMed  PubMed Central  Google Scholar 

  24. •• Wilson PH, Smits-Engelsman B, Caeyenberghs K, Steenbergen B, Sugden D, Clark J, et al. Cognitive and neuroimaging findings in developmental coordination disorder: new insights from a systematic review of recent research. Dev Med Child Neurol. 2017;59(11):1117–29 This article provides a comprehensive and complete overview of recent reseach in DCD.

    PubMed  Google Scholar 

  25. Biotteau M, Chaix Y, Blais M, Tallet J, Péran P, Albaret JM. Neural signature of DCD: a critical review of MRI neuroimaging studies. Front Neurol. 2016;7:227.

    PubMed  PubMed Central  Google Scholar 

  26. Zwicker JG, Missiuna C, Boyd LA. Neural correlates of developmental coordination disorder: a review of hypotheses. J Child Neurol. 2009;24(10):1273–81.

    PubMed  Google Scholar 

  27. Tomasch J. Size, distribution, and number of fibres in the human corpus callosum. Anat Rec. 1954;119(1):119–35.

    CAS  PubMed  Google Scholar 

  28. Lenroot RK, Giedd JN. Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev. 2006;30(6):718–29.

    PubMed  Google Scholar 

  29. Sigmundsson H, Ingvaldsen RP, Whiting HTA. Inter-and intra-sensory modality matching in children with hand-eye co-ordination problems. ExpBrain Res. 1997a;114(3):492–9.

    CAS  Google Scholar 

  30. Sigmundsson H, Ingvaldsen RP, Whiting HA. Inter-and intrasensory modality matching in children with hand-eye coordination problems: exploring the developmental lag hypothesis. Dev Med Child Neurol. 1997b;39(12):790–6.

    CAS  PubMed  Google Scholar 

  31. Sigmundsson H, Whiting HTA, Ingvaldsen RP. ‘Putting your foot in it’! A window into clumsy behaviour. Behav Brain Res. 1999;102(1–2):129–36.

    CAS  PubMed  Google Scholar 

  32. Sigmundsson H, Whiting HTA. Hand preference in children with developmental coordination disorders: cause and effect? Brain Cogn. 2002;49(1):45–53.

    CAS  PubMed  Google Scholar 

  33. Sigmundsson H. Perceptual deficits in clumsy children: inter-and intra-modal matching approach—a window into clumsy behavior. Neural plast. 2003a;10(1–2):27–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sigmundsson H. Disorders of motor development (clumsy child syndrome). In Neurodevelopmental Disorders (pp. 51–68). Springer, Vienna. 2005.

  35. •• Langevin LM, MacMaster FP, Crawford S, Lebel C, Dewey D. Common white matter microstructure alterations in pediatric motor and attention disorders. Journal Pediat. 2014;164(5):1157–64 This article provides evidence of inter-hemispheric disconnection in DCD and investigates the effects of comorbidity on brain structures in DCD.

    Google Scholar 

  36. Schmidt RA, Lee TD, Winstein C, Wulf G, Zelaznik HN. Motor control and learning: a behavioral emphasis. Human kinetics. 2018.

  37. Camus M, Ragert P, Vandermeeren Y, Cohen LG. Mechanisms controlling motor output to a transfer hand after learning a sequential pinch force skill with the opposite hand. Clin Neurophysiol. 2009;120(10):1859–65.

    PubMed  Google Scholar 

  38. de Guise E, del Pesce M, Foschi N, Quattrini A, Papo I, Lassonde M. Callosal and cortical contribution to procedural learning. Brain. 1999;122(6):1049–62.

    PubMed  Google Scholar 

  39. De Guise E, Lassonde M. Callosal contribution to procedural learning in children. Dev Neuropsychol. 2001;19(3):253–72.

    PubMed  Google Scholar 

  40. Lassonde M, Sauerwein H, Geoffroy G, Décarie M. Effects of early and late transection of the corpus callosum in children: a study of tactile and tactuomotor transfer and integration. Brain. 1986;109(5):953–67.

    PubMed  Google Scholar 

  41. Lassonde M, Sauerwein H, Chicoine AJ, Geoffroy G. Absence of disconnexion syndrome in callosal agenesis and early callosotomy: brain reorganization or lack of structural specificity during ontogeny? Neuropschol. 1991;29(6):481–95.

    CAS  Google Scholar 

  42. Midorikawa A, Kawamura M, Takaya R. A disconnection syndrome due to agenesis of the corpus callosum: disturbance of unilateral synchronization. Cortex. 2006;42(3):356–65.

    PubMed  Google Scholar 

  43. Tanaka-Arakawa MM, Matsui M, Tanaka C, Uematsu A, Uda S, Miura K, et al. Developmental changes in the corpus callosum from infancy to early adulthood: a structural magnetic resonance imaging study. PLoS One. 2015;10(3):e0118760.

    PubMed  PubMed Central  Google Scholar 

  44. Marzi CA, Bisiacchi P, Nicoletti R. Is interhemispheric transfer of visuomotor information asymmetric? Evidence from a meta-analysis. Neuropsychol. 1991;29(12):1163–77.

    CAS  Google Scholar 

  45. Bisiacchi P, Marzi CA, Nicoletti R, Carena G, Mucignat C, Tomaiuolo F. Left-right asymmetry of callosal transfer in normal human subjects. Behav Brain Res. 1994;64(1–2):173–8.

    CAS  PubMed  Google Scholar 

  46. Di Stefano M, Salvadori C. Asymmetry of the interhemispheric visuomotor integration in callosal agenesis. Neuroreport. 1998;9(7):1331–5.

    PubMed  Google Scholar 

  47. Lent R, Schmidt SL. The ontogenesis of the forebrain commissures and the determination of brain asymmetries. Prog Neurobiol. 1993;40(2):249–76.

    CAS  PubMed  Google Scholar 

  48. Gur RC, Packer IK, Hungerbuhler JP, Reivich M, Obrist WD, Amarnek WS, et al. Differences in the distribution of gray and white matter in human cerebral hemispheres. Science. 1980;207(4436):1226–8.

    CAS  PubMed  Google Scholar 

  49. Bloom JS, Hynd GW. The role of the corpus callosum in interhemispheric transfer of information: excitation or inhibition? Neuropsychol Rev. 2005;15(2):59–71.

    PubMed  Google Scholar 

  50. Kim SG, Ashe J, Hendrich K, Ellermann JM, Merkle H, Ugurbil K, et al. Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science. 1993;261(5121):615–7.

    CAS  PubMed  Google Scholar 

  51. Tisseyre J, Marquet-Doléac J, Barral J, Amarantini D, Tallet J. Lateralized inhibition of symmetric contractions is associated with motor, attentional and executive processes. Behav Brain Res. 2019;361:65–73.

    PubMed  Google Scholar 

  52. Todor JI, Lazarus JAC. Exertion level and the intensity of associated movements. Dev Med Child Neurol. 1986;28(2):205–12.

    CAS  PubMed  Google Scholar 

  53. Tallet J, Albaret JM, Barral J. Developmental changes in lateralized inhibition of symmetric movements in children with and without developmental coordination disorder. Res Dev Disabil. 2013;34(9):2523–32.

    PubMed  Google Scholar 

  54. Tallet J, Barral J, Hauert CA. Electro-cortical correlates of motor inhibition: a comparison between selective and non-selective stop tasks. Brain Res. 2009;1284:68–76.

    CAS  PubMed  Google Scholar 

  55. Repp BH. Sensorimotor synchronization: a review of the tapping literature. Psychon Bull Rev. 2005;12(6):969–92.

    PubMed  Google Scholar 

  56. Repp BH, Su YH. Sensorimotor synchronization: a review of recent research (2006–2012). Psychon Bull Rev. 2013;20(3):403–52.

    PubMed  Google Scholar 

  57. Blais M, Albaret JM, Tallet J. Is there a link between sensorimotor coordination and inter-manual coordination? Differential effects of auditory and/or visual rhythmic stimulations. Exp Brain Res. 2015;233(11):3261–9.

    PubMed  Google Scholar 

  58. Fraisse P. - Rythmes auditifs et rythmes visuels. In: L'année psychol. vol. 49. pp. 21–42. 1948.

  59. Getchell N. Age and task-related differences in timing stability, consistency, and natural frequency of children's rhythmic, motor coordination. Dev Psychobiol. 2006;48(8):675–85.

    PubMed  Google Scholar 

  60. Knyazeva M, Koeda T, Njiokiktjien C, Jonkman EJ, Kurganskaya M, De Sonneville L, et al. EEG coherence changes during finger tapping in acallosal and normal children: a study of inter-and intrahemispheric connectivity. Behav Brain Res. 1997;89(1–2):243–58.

    CAS  PubMed  Google Scholar 

  61. Kashiwagi A, Kashiwagi T, Nishikawa T, Okuda JI. Hemispheric asymmetry of processing temporal aspects of repetitive movement in two patients with infraction involving the corpus callosum. Neuropsychol. 1989;27(6):799–809.

    CAS  Google Scholar 

  62. de Castelnau P, Albaret JM, Chaix Y, Zanone PG. Developmental coordination disorder pertains to a deficit in perceptuo-motor synchronization independent of attentional capacities. Hum Mov Sci. 2007;26(3):477–90.

    PubMed  Google Scholar 

  63. de Castelnau P, Albaret JM, Chaix Y, Zanone PG. A study of EEG coherence in DCD children during motor synchronization task. Hum Mov Sci. 2008;27(2):230–41.

    PubMed  Google Scholar 

  64. Mackenzie SJ, Getchell N, Deutsch K, Wilms-Floet A, Clark JE, Whitall J. Multi-limb coordination and rhythmic variability under varying sensory availability conditions in children with DCD. Hum Mov Sci. 2008;27(2):256–69.

    PubMed  PubMed Central  Google Scholar 

  65. Debrabant J, Gheysen F, Caeyenberghs K, Van Waelvelde H, Vingerhoets G. Neural underpinnings of impaired predictive motor timing in children with developmental coordination disorder. Res Dev Disabil. 2013;34(5):1478–87.

    PubMed  Google Scholar 

  66. Roche R, Wilms-Floet AM, Clark JE, Whitall J. Auditory and visual information do not affect self-paced bilateral finger tapping in children with DCD. Hum Mov Sci. 2011;30(3):658–71.

    PubMed  PubMed Central  Google Scholar 

  67. Roche R, Viswanathan P, Clark JE, Whitall J. Children with developmental coordination disorder (DCD) can adapt to perceptible and subliminal rhythm changes but are more variable. Hum Mov Sci. 2016;50:19–29.

    PubMed  Google Scholar 

  68. Whitall J, Getchell N, McMenamin S, Horn C, Wilms-Floet A, Clark JE. Perception–action coupling in children with and without DCD: frequency locking between task-relevant auditory signals and motor responses in a dual-motor task. Child Care Health Dev. 2006;32(6):679–92.

    CAS  PubMed  Google Scholar 

  69. Whitall J, Chang TY, Horn CL, Jung-Potter J, McMenamin S, Wilms-Floet A, et al. Auditory-motor coupling of bilateral finger tapping in children with and without DCD compared to adults. Hum Mov Sci. 2008;27(6):914–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Whitall J, Clark JE. A perception–action approach to understanding typical and atypical motor development. In Advances in child development and behavior (Vol. 55, pp. 245–272). JAI. 2018.

    Google Scholar 

  71. Williams HG, Woollacott MH. Ivry.. Timing and motor control in clumsy children. J Mot Behav. 1992;24:165–72.

    CAS  PubMed  Google Scholar 

  72. Trainor LJ, Chang A, Cairney J, Li YC. Is auditory perceptual timing a core deficit of developmental coordination disorder? Annals NY Academy Sci. 2018;1423(1):30.

    Google Scholar 

  73. Lê M, Blais M, Jucla M, Chauveau N, Maziero S, Biotteau M, Albaret J-M, Péran P, Chaix Y, Tallet J (in revision). Procedural learning and retention of audio-verbal temporal sequence is altered in children with developmental coordination disorder but cortical thickness matters.

  74. Jäncke L, Loose R, Lutz K, Specht K, Shah NJ. Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Cogn Brain Res. 2000;10(1–2):51–66.

    Google Scholar 

  75. Koeda T, Knyazeva M, Njiokiktjien C, Jonkman EJ, De Sonneville L, Vildavsky V.. The EEG in acallosal children. Coherence values in the resting state: left hemisphere compensatory mechanism?. Electroencephalogr Clin Neurophysiol, 1995;95(6):397–407.

    CAS  PubMed  Google Scholar 

  76. Hoy KE, Fitzgerald PB, Bradshaw JL, Armatas CA, Georgiou-Karistianis N. Investigating the cortical origins of motor overflow. Brain Res Rev. 2004;46(3):315–27.

    PubMed  Google Scholar 

  77. Addamo PK, Farrow M, Hoy KE, Bradshaw JL, Georgiou-Karistianis N. The effects of age and attention on motor overflow production—a review. Brain Res Rev. 2007;54(1):189–204.

    PubMed  Google Scholar 

  78. Mayston MJ, Harrison LM, Stephens JA. A neurophysiological study of mirror movements in adults and children. Ann Neurol. 1999;45(5):583–94.

    CAS  PubMed  Google Scholar 

  79. Sehm B, Steele CJ, Villringer A, Ragert P. Mirror motor activity during right-hand contractions and its relation to white matter in the posterior midbody of the corpus callosum. Cereb Cortex. 2016;26(11):4347–55.

    PubMed  Google Scholar 

  80. Cox BC, Cincotta M, Espay AJ. Mirror movements in movement disorders: a review. Tremor hyperkinetic mov;2012:2.

  81. Koerte I, Eftimov L, Laubender RP, Esslinger O, Schroeder AS, Ertl-Wagner BI, et al. Mirror movements in healthy humans across the lifespan: effects of development and ageing. Dev Med Child Neurol. 2010;52(12):1106–12.

    Google Scholar 

  82. Fling BW, Peltier S, Bo J, Welsh RC, Seidler RD. Age differences in interhemispheric interactions: callosal structure, physiological function, and behavior. Front Neurosci. 2011;5:38.

    PubMed  PubMed Central  Google Scholar 

  83. Welniarz Q, Dusart I, Roze E. The corticospinal tract: evolution, development, and human disorders. Dev neurobiol. 2017;77(7):810–29.

    PubMed  Google Scholar 

  84. Licari MK, Billington J, Reid SL, Wann JP, Elliott CM, Winsor AM, et al. Cortical functioning in children with developmental coordination disorder: a motor overflow study. Exp Brain Res. 2015;233(6):1703–10.

    PubMed  Google Scholar 

  85. Licari M, Larkin D, Miyahara M. The influence of developmental coordination disorder and attention deficits on associated movements in children. Hum Mov Sci. 2006;25(1):90–9.

    PubMed  Google Scholar 

  86. Blais M, Baly C, Biotteau M, Albaret JM, Chaix Y, Tallet J. Lack of motor inhibition as a marker of learning difficulties of bimanual coordination in teenagers with developmental coordination disorder. Dev Neuropsychol. 2017;42(3):207–19.

    PubMed  Google Scholar 

  87. He JL, Fuelscher I, Coxon J, Barhoun P, Parmar D, Enticott PG, et al. Impaired motor inhibition in developmental coordination disorder. Brain Cogn. 2018a;127:23–33.

    CAS  PubMed  Google Scholar 

  88. •• He JL, Fuelscher I, Enticott PG, Teo WP, Barhoun P, Hyde C. Interhemispheric cortical inhibition is reduced in young adults with developmental coordination disorder. Front Neurol. 2018b;9:179 This article provides evidence of inter-hemispheric dysconnection in DCD.

    PubMed  PubMed Central  Google Scholar 

  89. •• Blais M, Amarantini D, Albaret JM, Chaix Y, Tallet J. Atypical inter-hemispheric communication correlates with altered motor inhibition during learning of a new bimanual coordination pattern in developmental coordination disorder. Dev Sci. 2018;21(3):e12563 This article provides evidence of inter-hemispheric dysconnection in DCD.

    PubMed  Google Scholar 

  90. Nissen MJ, Bullemer P. Attentional requirements of learning: evidence from performance measures. Cogn Psychol. 1987;19(1):1–32.

    Google Scholar 

  91. Wilson PH, Maruff P, Lum J. Procedural learning in children with developmental coordination disorder. Hum Mov Sci. 2003;22(4–5):515–26.

    PubMed  Google Scholar 

  92. Lejeune C, Catale C, Willems S, Meulemans T. Intact procedural motor sequence learning in developmental coordination disorder. Res Dev Disabil. 2013;34(6):1974–81.

    PubMed  Google Scholar 

  93. Gheysen F, Van Waelvelde H, Fias W. Impaired visuo-motor sequence learning in developmental coordination disorder. Res Dev Disabil. 2011;32(2):749–56.

    PubMed  Google Scholar 

  94. Kelso JA. Phase transitions and critical behavior in human bimanual coordination. Am J Physiol-Regul, Integ Comp Physiol. 1984;246(6):R1000–4.

    CAS  Google Scholar 

  95. Serrien DJ. Coordination constraints during bimanual versus unimanual performance conditions. Neuropsychol. 2008a;6(2):419–25.

    Google Scholar 

  96. Gooijers J, Swinnen SP. Interactions between brain structure and behavior: the corpus callosum and bimanual coordination. Neurosci Biobehav Rev. 2014;43:1–19.

    CAS  PubMed  Google Scholar 

  97. Johansen-Berg H, Della-Maggiore V, Behrens TE, Smith SM, Paus T. Integrity of white matter in the corpus callosum correlates with bimanual co-ordination skills. Neuroimage. 2007;36:T16–21.

    PubMed  PubMed Central  Google Scholar 

  98. Stanák A, Cohen ER, Seidler RD, Duong TQ, Kim SG. The size of corpus callosum correlates with functional activation of medial motor cortical areas in bimanual and unimanual movements. Cereb Cortex. 2003;13(5):475–85.

    Google Scholar 

  99. Preilowski BF. Possible contribution of the anterior forebrain commissures to bilateral motor coordination. Neuropsychol. 1972;10(3):267–77.

    CAS  Google Scholar 

  100. Barral J, Debu B, Rival C. Developmental changes in unimanual and bimanual aiming movements. Dev Neuropsychol. 2006;29(3):415–29.

    PubMed  Google Scholar 

  101. Fagard J, Hardy-Léger I, Kervella C, Marks A. Changes in interhemispheric transfer rate and the development of bimanual coordination during childhood. J Exp Child Psychol. 2001;80(1):1–22.

    CAS  PubMed  Google Scholar 

  102. Knyazeva M, Koeda T, Njiokiktjien C, Jonkman EJ, Kurganskaya M, De Sonneville L, et al. EEG coherence changes during finger tapping in acallosal and normal children: a study of inter-and intrahemispheric connectivity. Behav Brain Res. 1997;89(1–2):243–58.

    CAS  PubMed  Google Scholar 

  103. Serrien DJ, Nirkko AC, Wiesendanger M. Role of the corpus callosum in bimanual coordination: a comparison of patients with congenital and acquired callosal damage. Eur J Neurosci. 2001;14(11):1897–905.

    CAS  PubMed  Google Scholar 

  104. Tuller B, Kelso JAS. Environmentally-specified patterns of movement coordination in normal and split-brain subjects. Exp Brain Res. 1989;75(2):306–16.

    CAS  PubMed  Google Scholar 

  105. Volman MCJ, Geuze RH. Relative phase stability of bimanual and visuomanual rhythmic coordination patterns in children with a developmental coordination disorder. Hum Mov Sci. 1998;17(4–5):541–72.

    Google Scholar 

  106. Przysucha EP, Maraj BK. Inter-limb coordination and control in boys with and without DCD in ball catching. Acta Psychol. 2014;151:62–73.

    Google Scholar 

  107. Volman MJM, Laroy ME, Jongmans MJ. Rhythmic coordination of hand and foot in children with developmental coordination disorder. Child Care Health Dev. 2006;32(6):693–702.

    CAS  PubMed  Google Scholar 

  108. Sussman D, Leung RC, Chakravarty MM, Lerch JP, Taylor MJ. The developing human brain: age-related changes in cortical, subcortical, and cerebellar anatomy. Brain behav. 2016;6(4):e00457.

    PubMed  PubMed Central  Google Scholar 

  109. Luders E, Thompson PM, Toga AW. The development of the corpus callosum in the healthy human brain. J Neurosci. 2010;30(33):10985–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. • Zwicker JG, Missiuna C, Harris SR, Boyd LA. Developmental coordination disorder: a pilot diffusion debra the neuroanatomic basis of motor coordination in children and its relationship with symptoms of attention-deficit/hyperactivity disorder. Psychol Med. 2012;46(11):2363–73 This article investigates the effects of comorbidity on brain structures.

    Google Scholar 

  111. •• Debrabant J, Vingerhoets G, Van Waelvelde H, Leemans A, Taymans T, Caeyenberghs K. Brain connectomics of visual-motor deficits in children with developmental coordination disorder. J Pediatr. 2016;169:21–7 This article provides arguments to support several dysconnections in DCD.

    PubMed  Google Scholar 

  112. •• Williams J, Kashuk SR, Wilson PH, Thorpe G, Egan GF. White matter alterations in adults with probable developmental coordination disorder: an MRI diffusion tensor imaging study. Neuroreport. 2017;28(2):87–92 This article provides arguments to support fronto-parietal and cortico-spinal dysconnections in DCD.

    PubMed  Google Scholar 

  113. • Hyde C, Fuelscher I, Enticott PG, Jones DK, Farquharson S, Silk TJ, et al. White matter organization in developmental coordination disorder: a pilot study exploring the added value of constrained spherical deconvolution. NeuroImage: Clini. 2019;21:101625 This article provides arguments to support a fronto-parietal dysconnection in DCD.

    Google Scholar 

  114. Mercuri E, Jongmans M, Henderson S, Pennock J, Chung YL, De Vries L, et al. Evaluation of the corpus callosum in clumsy children born prematurely: a functional and morphological study. Neuroped. 1996;27(06):317–22.

    CAS  PubMed  Google Scholar 

  115. Njiokiktjien C, De Sonneville L, Vaal J. Callosal size in children with learning disabilities. Behav Brain Res. 1994;64(1–2):213–8.

    CAS  PubMed  Google Scholar 

  116. Hung YC, Robert M, Friel K, Gordon A. Relationship between integrity of the corpus callosum and bimanual coordination in children with unilateral spastic cerebral palsy. Front Hum Neurosci. 2019;13:334.

    PubMed  PubMed Central  Google Scholar 

  117. Decety J. Do imagined and executed actions share the same neural substrate? Cogn Brain Res. 1996;3(2):87–93.

    CAS  Google Scholar 

  118. Iacoboni M, Dapretto M. The mirror neuron system and the consequences of its dysfunction. Nat Rev Neurosci. 2006;7(12):942–51.

    CAS  PubMed  Google Scholar 

  119. Rizzolatti G, Luppino G, Matelli M. The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol. 1998;106(4):283–96.

    CAS  PubMed  Google Scholar 

  120. Wilson PH, Maruff P, McKenzie BE. Covert orienting of visuospatial attention in children with developmental coordination disorder. Dev Med Child Neurol. 1997;39(11):736–45.

    CAS  PubMed  Google Scholar 

  121. Reynolds JE, Licari MK, Billington J, Chen Y, Aziz-Zadeh L, Werner J, et al. Mirror neuron activation in children with developmental coordination disorder: a functional MRI study. Int J Dev Neurosci. 2015;47:309–19.

    PubMed  Google Scholar 

  122. • Reynolds JE, Thornton AL, Elliott C, Williams J, Lay BS, Licari MK. A systematic review of mirror neuron system function in developmental coordination disorder: imitation, motor imagery, and neuroimaging evidence. Res Dev Disabil. 2015;47:234–83 This article provides arguments in favour of fronto-parietal dysconnection in DCD.

    PubMed  Google Scholar 

  123. Reynolds JE, Kerrigan S, Elliott C, Lay BS, Licari MK. Poor imitative performance of unlearned gestures in children with probable developmental coordination disorder. J Mot Behav. 2017;49(4):378–87.

    PubMed  Google Scholar 

  124. • Adams IL, Lust JM, Wilson PH, Steenbergen B. Compromised motor control in children with DCD: a deficit in the internal model?—a systematic review. Neurosci Biobehav Rev. 2014;47:225–44 This article provides arguments to support a parieto-cerebellar dysconnection in DCD.

    PubMed  Google Scholar 

  125. • Werner JM, Cermak SA, Aziz-Zadeh L. Neural correlates of developmental coordination disorder: the mirror neuron system hypothesis. J Behav Brain Sci. 2012;2(02):258 This article provides arguments in favour of fronto-parietal dysconnection in DCD.

    Google Scholar 

  126. Barhoun P, Fuelscher I, Kothe EJ, He JL, Youssef GJ, Enticott PG, et al. Motor imagery in children with DCD: a systematic and meta-analytic review of hand-rotation task performance. Neurosc Biobehavl Rev. 2019.

  127. Elbasan B, Kayıhan H, Duzgun I. Sensory integration and activities of daily living in children with developmental coordination disorder. Italian J ped. 2012;38(1):14.

    Google Scholar 

  128. Sinani C, Sugden DA, Hill EL. Gesture production in school vs. clinical samples of children with developmental coordination disorder (DCD) and typically developing children. Res Dev Disabil. 2011;32(4):1270–82.

    PubMed  Google Scholar 

  129. Zoia S, Pelamatti G, Cuttini M, Casotto V, Scabar A. Performance of gesture in children with and without DCD: effects of sensory input modalities. Dev Med Child Neurol. 2002;44(10):699–705.

    PubMed  Google Scholar 

  130. Reynolds JE, Licari MK, Elliott C, Lay BS, Williams J. Motor imagery ability and internal representation of movement in children with probable developmental coordination disorder. Hum Mov Sci. 2015;44:287–98.

    PubMed  Google Scholar 

  131. Reynolds JE, Billington J, Kerrigan S, Williams J, Elliott C, Winsor AM, et al. Mirror neuron system activation in children with developmental coordination disorder: a replication functional MRI study. Res Dev Disabil. 2017. https://doi.org/10.1016/j.ridd.2017.11.012.

    CAS  PubMed  Google Scholar 

  132. Noten M, Wilson PH, Ruddock S, Steenbergen B. Mild impairments of motor imagery skills in children with DCD. Res Dev Disabil. 2014;35:1152–9.

    PubMed  Google Scholar 

  133. Kashiwagi M, Iwaki S, Narumi Y, Tamai H, Suzuki S. Parietal dysfunction in developmental coordination disorder: a functional MRI study. Neuroreport. 2009;20(15):1319–24.

    CAS  PubMed  Google Scholar 

  134. Zwicker JG, Missiuna C, Harris SR, Boyd LA. Brain activation of children with developmental coordination disorder is different than peers. Pediatrics. 2010;126(3):e678–86.

    PubMed  Google Scholar 

  135. Króliczak G, Piper BJ, Frey SH. Specialization of the left supramarginal gyrus for hand-independent praxis representation is not related to hand dominance. Neuropsychol. 2016;93:501–12.

    Google Scholar 

  136. Braddick O, Atkinson J. Visual control of manual actions: brain mechanisms in typical development and developmental disorders. Dev Med Child Neurol. 2013;55:13–8.

    PubMed  Google Scholar 

  137. Sigmundsson H, Hansen PC, Talcott JB. Do ‘clumsy’children have visual deficits. Behav Brain Res. 2003b;139(1–2):123–9.

    CAS  PubMed  Google Scholar 

  138. Kagerer FA, Bo J, Contreras-Vidal JL, Clark JE. Visuomotor adaptation in children with developmental coordination disorder. Mot Control. 2004;8(4):450–60.

    Google Scholar 

  139. Cantin N, Polatajko HJ, Thach WT, Jaglal S. Developmental coordination disorder: exploration of a cerebellar hypothesis. Hum Mov Sci. 2007;26(3):491–509.

    PubMed  Google Scholar 

  140. Doyon J, Benali H. Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol. 2005;15(2):161–7.

    CAS  PubMed  Google Scholar 

  141. Schmahmann JD, Pandya DN. Disconnection syndromes of basal ganglia, thalamus, and cerebrocerebellar systems. Cortex. 2008;44(8):1037–66.

    PubMed  PubMed Central  Google Scholar 

  142. Doyon J. Motor sequence learning and movement disorders. Curr Opin Neurol. 2008;21(4):478–83.

    PubMed  Google Scholar 

  143. Geuze RH. Postural control in children with developmental coordination disorder. Neural plasticity. 2005;12(2–3):183–96.

    PubMed  PubMed Central  Google Scholar 

  144. Smits-Engelsman BC, Wilson PH. Noise, variability, and motor performance in developmental coordination disorder. Dev Med Child Neurol. 2013;55:69–72.

    PubMed  Google Scholar 

  145. Licari MK, Reynolds JE. Understanding performance variability in developmental coordination disorder: what does it all mean? Currt Dev Dis Rep. 2017;4(2):53–9.

    Google Scholar 

  146. Brookes RL, Nicolson RI, Fawcett AJ. Prisms throw light on developmental disorders. Neuropsychol. 2007;45(8):1921–30.

    Google Scholar 

  147. Van Waelvelde H, De Weerdt W, De Cock P, Janssens L, Feys H, Engelsman BCS. Parameterization of movement execution in children with developmental coordination disorder. Brain Cogn. 2006;60(1):20–31.

    PubMed  Google Scholar 

  148. Mariën P, Wackenier P, De Surgeloose D, De Deyn PP, Verhoeven J. Developmental coordination disorder: disruption of the cerebello-cerebral network evidenced by SPECT. Cerebellum. 2010;9(3):405–10.

    PubMed  Google Scholar 

  149. Gordon AM. Impaired voluntary movement control and its rehabilitation in cerebral palsy. In Progress in Motor Control (pp. 291–311). Springer, Cham. 2016.

    Google Scholar 

  150. Williams J, Hyde C, Spittle A. Developmental coordination disorder and cerebral palsy: is there a continuum? Curr Dev Disord Rep. 2014;1(2):118–24.

    Google Scholar 

  151. Spittle AJ, Orton J. Cerebral palsy and developmental coordination disorder in children born preterm. In Seminars in Fetal and Neonatal Medicine (Vol. 19, No. 2, pp. 84–89). WB Saunders. 2014.

  152. Peters LH, Maathuis CG, Hadders-Algra M. Neural correlates of developmental coordination disorder. Dev Med Child Neurol. 2013;55:59–64.

    PubMed  Google Scholar 

  153. • Pearsall-Jones JG, Piek JP, Levy F. Developmental coordination disorder and cerebral palsy: categories or a continuum? Hum Mov Sci. 2010;29, 787(5):–798 This article provides arguments in support of a continuum between DCD and CP, in favour of cortico-spinal dysconnection in DCD.

    PubMed  Google Scholar 

  154. •• Hyde C, Fuelscher I, Williams J, Lum JA, He J, Barhoun P, et al. Corticospinal excitability during motor imagery is reduced in young adults with developmental coordination disorder. Res Dev Disabil. 2018;72:214–24 This article provides evidence of cortico-spinal dysconnection in DCD.

    CAS  PubMed  Google Scholar 

  155. Williams HG, Burke JR. Conditioned patellar tendon reflex function in children with and without developmental coordination disorders. Adapt Phys Act Q. 1995;12(3):250–61.

    Google Scholar 

  156. Querne L, Berquin P, Vernier-Hauvette MP, Fall S, Deltour L, Meyer ME, et al. Dysfunction of the attentional brain network in children with developmental coordination disorder: a fMRI study. Brain Res. 2008;1244:89–102.

    CAS  PubMed  Google Scholar 

  157. Fuelscher I, Caeyenberghs K, Enticott PG, Williams J, Lum J, Hyde C. Differential activation of brain areas in children with developmental coordination disorder during tasks of manual dexterity: an ALE meta-analysis. Neurosci Biobehav Re. 2018;86:77–84.

    CAS  Google Scholar 

  158. Cremoux S, Tallet J, Dal Maso F, Berton E, Amarantini D. Impaired corticomuscular coherence during isometric elbow flexion contractions in humans with cervical spinal cord injury. Eur J Neurosci. 2017;46(4):1991–2000.

    PubMed  Google Scholar 

  159. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Pub. 2013.

  160. • Wilson PH, Smits-Engelsman B, Caeyenberghs K, Steenbergen B. Toward a hybrid model of developmental coordination disorder. Curr Dev Disord Rep. 2017;4(3):64–71 This article considers environmental constraints to interpret deficits found in DCD.

    Google Scholar 

  161. • Caeyenberghs K, Taymans T, Wilson PH, Vanderstraeten G, Hosseini H, Van Waelvelde H. Neural signature of developmental coordination disorder in the structural connectome independent of comorbid autism. Dev Sci. 2016;19(4):599–612 This article investigates the effects of comorbidity on brain connectivity.

    PubMed  Google Scholar 

  162. • Shaw P, Weingart D, Bonner T, Watson B, Park MT, Sharp W, et al. Defining the neuroanatomic basis of motor coordination in children and its relationship with symptoms of attention-deficit/hyperactivity disorder. Psychol Med. 2016;46(11):2363–73 This article investigates the effects of comorbidity on brain connectivity.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Tallet.

Ethics declarations

Conflict of Interest

Jessica Tallet and Peter Wilson declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Motor Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tallet, J., Wilson, P. Is Developmental Coordination Disorder a Dysconnection Syndrome?. Curr Dev Disord Rep 7, 1–13 (2020). https://doi.org/10.1007/s40474-020-00188-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40474-020-00188-9

Keywords

Navigation