Skip to main content

Advertisement

Log in

Modulation of Brain Function and Behavior by Focused Ultrasound

  • Neuromodulation (C Stagg, Section Editor)
  • Published:
Current Behavioral Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The past decade has seen rapid growth in the application of focused ultrasound (FUS) as a tool for basic neuroscience research and potential treatment of brain disorders. Here, we review recent developments in our understanding of how FUS can alter brain activity, perception, and behavior when applied to the central nervous system, either alone or in combination with circulating agents.

Recent Findings

Focused ultrasound in the central nervous system can directly excite or inhibit neuronal activity, as well as affect perception and behavior. Combining FUS with intravenous microbubbles to open the blood-brain barrier also affects neural activity and behavior, and the effects may be more sustained than FUS alone. Opening the BBB also allows delivery of drugs that do not cross the intact BBB including viral vectors for gene delivery.

Summary

While further research is needed to elucidate the biophysical mechanisms, focused ultrasound, alone or in combination with other factors, is rapidly maturing as an effective technology for altering brain activity. Future challenges include refining control over targeting specificity, the volume of affected tissue, cell-type specificity (excitatory or inhibitory), and the duration of neural and behavioral effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Ultrasound can be characterized by the level of acoustic exposure. The field has defined two terms related to safety: thermal index (TI) and mechanical index (MI). TI is the ratio of the power used to that required to raise the temperature by 1 °C. MI denotes the peak rarefactional pressure normalized by the square root of the center frequency and is a measure of non-thermal effects such as cavitation. The average intensity is defined as the total power delivered divided by beam area (W/cm2). Spatially averaged intensity can be indicated by Isppa (W/cm2, spatial peak pulse-average intensity) while temporally averaged intensity, Ispta (spatial peak, time-averaged intensity (W/cm2)), indicates the rate of energy deposition in the tissue [41, 42].

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Harvey EN. The effect of high frequency sound waves on heart muscle and other irritable tissues. Am J Physiol. 1929;91:284–90.

    Google Scholar 

  2. Lynn JG, Zwemer RL, Chick AJ, Miller AE. A new method for the generation and use of focused ultrasound in experimental biology. J General Physiology. 1942;26(2):179–93.

    Article  CAS  Google Scholar 

  3. Fry FJ, Ades HW, Fry WJ. Production of reversible changes in the central nervous system by ultrasound. Science. 1958;127:83–4.

    Article  PubMed  CAS  Google Scholar 

  4. Adrianov OS, Vykhodtseva NI, Fokin VF, Uranova NA, Avirom VM, Galogazha MM. Reversible functional blocking of the optic tract by focused ultrasound. Bull Exp Biol Med. 1984;97:844–84.

    Google Scholar 

  5. Ballantine HT, Bell E, Manlapaz J. Progress and problems in the neurological applications of focused ultrasound. J Neurosurg. 1960;17:858–76. https://doi.org/10.3171/jns.1960.17.5.0858.

    Article  PubMed  Google Scholar 

  6. Tufail Y, Matyushov A, Baldwin N, Tauchmann ML, Georges J, Yoshihiro A, et al. Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron. 2010;66(5):681–94. https://doi.org/10.1016/j.neuron.2010.05.008.

    Article  PubMed  CAS  Google Scholar 

  7. Yoo SS, Bystritsky A, Lee JH, Zhang Y, Fischer K, Min BK, et al. Focused ultrasound modulates region-specific brain activity. NeuroImage. 2011;56:1267–75.

    Article  PubMed  PubMed Central  Google Scholar 

  8. King RL, Brown JR, Newsome WT, Pauly KB. Effective parameters for ultrasound-induced in vivo neurostimulation. Ultrasound Med Biol. 2013;39:312–31.

    Article  PubMed  Google Scholar 

  9. Kim H, Chiu A, Lee SD, Fischer K, Yoo SS. Focused ultrasound-mediate non-invasive brain stimulation: examination of sonication parameters. Brain Stimulation. 2014;7:748–56. https://doi.org/10.1016/j.brs.2014.06.011.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A, et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci. 2014;17(2):322–9. https://doi.org/10.1038/nn.3620.

    Article  PubMed  CAS  Google Scholar 

  11. Mueller J, Legon W, Opitz A, Sato TF, Tyler WJ. Transcranial focused ultrasound modulates intrinsic and evoked EEG dynamics. Brain Stimul. 2014;7(6):900–8. https://doi.org/10.1016/j.brs.2014.08.008.

    Article  PubMed  Google Scholar 

  12. Lee W, Chung YA, Jung Y, Song IU, Yoo SS. Simultaneous acoustic stimulation of human primary and secondary somatosensory cortices using transcranial focused ultrasound. BMC Neurosci. 2016a;17(1):68.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kamimura HAS, Wang S, Chen H, Wang Q, Aurup C, Acosta C, et al. Focused ultrasound neuromodulation of cortical and subcortical brain structures using 1.9 MHz. Med Phys. 2016;43(10):5730–5. https://doi.org/10.1118/1.4963208.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee W, Kim HC, Jung Y, Chung YA, Song IU, Lee JH, et al. Transcranial focused ultrasound stimulation of human primary visual cortex. Sci Rep. 2016b;6:34026. https://doi.org/10.1038/srep34026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kim H, Park MY, Lee SD, Lee W, Chiu A, Yoo SS. Suppression of EEG visual-evoked potentials in rats through neuromodulatory focused ultrasound. Neuroreport. 2015;26(4):211–5. https://doi.org/10.1097/WNR.0000000000000330.

  16. Daniels D, Sharabi S, Last D, Guez D, Salomon S, Zivli Z, et al. Focused ultrasound-induced suppression of auditory evoked potentials in vivo. Ultrasound Med Biol. 2018;44(5):1022–30. https://doi.org/10.1016/j.ultrasmedbio.2018.01.010.

    Article  PubMed  Google Scholar 

  17. Deffieux T, Younan Y, Wattiez N, Tanter M, Pouget P, Aubry JF. Low-intensity focused ultrasound modulates monkey visuomotor behavior. Curr Biol. 2013;23(23):2430–3. https://doi.org/10.1016/j.cub.2013.10.029.

    Article  PubMed  CAS  Google Scholar 

  18. • Wattiez N, Constans C, Deffieux T, Daye PM, Tanter M, Aubry J-F, et al. Transcranial ultrasonic stimulation modulates single-neuron discharge in macaques performing an antisaccade task. Brain Stimulation. 2017;10(6):1024–31. https://doi.org/10.1016/j.brs.2017.07.007. This study showed that FUS directed to a particular cortical area modulates activity in a reciprocally connected area in awake, behaving nonhuman primates, thus demonstrating possible long-range effects of sonication.

    Article  PubMed  Google Scholar 

  19. Hameroff S, Trakas M, Duffield C, Annabi E, Gerace MB, Boyle P, et al. Transcranial ultrasound (TUS) effects on mental states: a pilot study. Brain Stimul. 2013;6:409–15.

    Article  PubMed  Google Scholar 

  20. Yi Y, Lu C-B, Li X-L (2015) Effect of focused ultrasound stimulation at different ultrasonic power levels on the local field potential power spectrum. Chin. Phys. B 24(8):088704. https://doi.org/10.1088/1674-1056/24/8/088704

  21. Rinaldi PC, Jones JP, Reines F, Price LR. Modification by focused ultrasound pulses of electrically evoked responses from an in vitro hippocampal preparation. Brain Res. 1991;558(1):36–42.

    Article  PubMed  CAS  Google Scholar 

  22. Bachtold MR, Rinaldi PC, Jones JP, Reines F, Price LR. Focused ultrasound modifications of neural circuit activity in a mammalian brain. Ultrasound Med Biol. 1998;24(4):557–65.

    Article  PubMed  CAS  Google Scholar 

  23. Tyler WJ, Tufail Y, Finsterwald M, Tauchmann ML, Olson EJ, Majestic C. Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS One. 2008;3:e3511.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Min B-K, Bystrisky A, Jung K-I, Fischer K, Zang Y, Maen L-S, et al. Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity. BMC Neuroscience. 2011;12:23. doi:1186/1471-2202-12-23

    Article  PubMed  PubMed Central  Google Scholar 

  25. Min B-K, Yang PS, Bohlke M, Park S, Vago RD, Maher TJ, et al. Focused ultrasound modulates the level of cortical neurotransmitters: potential as a new functional brain mapping technique. Int J Imaging Syst Technol. 2011b;21:232–40.

    Article  Google Scholar 

  26. Yang PS, Kim H, Lee W, Bohlke M, Park S, Maher TJ, et al. Transcranial focused ultrasound to the thalamus is associated with reduced extracellular GABA levels in rats. Neuropsychobiology. 2012;65(3):153–60. https://doi.org/10.1159/000336001.

    Article  PubMed  CAS  Google Scholar 

  27. Dallapiazza RF, Timbie KF, Holmberg S, Gatesman J, Lopes MB, Price RJ, Miller GW, Elias WJ.(2018) Non-invasive neuromodulation and thalamic mapping with low-intensity focused ultrasound. J Neurosurg 128(3):875-884. https://doi.org/10.3171/2016.11.

  28. • Legon W, Ai L, Bansal P, Mueller JK (2018). Neuromodulation with single-element transcranial focused ultrasound in human thalamus. Hum Brain Mapp. 1–12. https://doi.org/10.1002/hbm.23981. FUS applied to a deep brain structure altered both sensory evoked potentials and behavioral performance on a tactile discrimination task.

  29. Mehić E, Xu JM, Caler CJ, Coulson NK, Moritz CT, Mourad PD. Increased anatomical specificity of neuromodulation via modulated focused ultrasound 2014;9(2):e86939. https://doi.org/10.1371/journal.pone.0086939.

  30. Kim E, Anguluan E, Kim JG. Monitoring cerebral hemodynamic change during transcranial ultrasound stimulation using optical intrinsic signal imaging. Sci Rep. 2017 13;7(1):13148.https://doi.org/10.1038/s41598-017-13572-0.

  31. Baek H, Pahk KJ, Kim H. A review of low-intensity focused ultrasound for neuromodulation. Biomed Eng Lett doi. 2016;7:135–42. https://doi.org/10.1007/s13534-016-0007-y.

    Article  Google Scholar 

  32. Bystritsky A, Korb AS, Douglass PK, Cohen MS, Melega WP, Mulgaonkar AP, et al. A review of low-intensity focused ultrasound pulsation. Brain Stimulation. 2011;4:125–36. https://doi.org/10.1016/j.brs.2011.03.007.

    Article  PubMed  Google Scholar 

  33. Fini M, Tyler WJ. Transcranial focused ultrasound: a new tool for non-invasive neuromodulation. International Review of Psychiatry. 2017;29(2):168–77. https://doi.org/10.1080/09540261.2017.1302924.

    Article  PubMed  Google Scholar 

  34. Gavrilov LR, Tsirulnikov EM, Davies IA. (1996) Application of focused ultrasound for the stimulation of neural structures. Ultrasound Med Biol 22(2):179–192. Review. PubMed.

  35. • Moore ME, Loft JM, Clegern WC, Wisor JP. Manipulating neuronal activity in the mouse brain with ultrasound: a comparison with optogenetic activation of the cerebral cortex. Neurosci Lett. 2015;604:183–7. https://doi.org/10.1016/j.neulet.2015.07.024. Electrical responses to FUS more closely resemble optogenetic stimulation of pyramidal neurons than interneurons.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Naor O, Krupa S, Shoham S. Ultrasonic neuromodulation. J Neural Eng. 2016;13(3):031003. https://doi.org/10.1088/1741-2560/13/3/031003.

    Article  PubMed  Google Scholar 

  37. Rezayat E, Toostani IG. A review on brain stimulation using low intensity focused ultrasound. Basic Clin Neurosci. 2016;7(3):187–94.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Sassaroli E, Vykhodtseva N. Acoustic neuromodulation from a basic science perspective. J Ther Ultrasound. 2016;4:17.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tyler WJ. The mechanobiology of brain function. Nature Reviews Neuroscience. 2012;13:867–78.

    Article  PubMed  CAS  Google Scholar 

  40. Marquet F, Tung Y-S, Konofagou E.E. Feasibility Study Of A Clinical blood-brain opening ultrasound system, Nano Life Vol. 1, Nos. 3 & 4, 309–322, 2010.

  41. Sprawls P. Physical principles of medical imaging. Rockville, MD: Aspen; 1987.

  42. Szabo T. Diagnostic ultrasound imaging inside out. Amsterdam: Elsevier Academic; 2004.

    Google Scholar 

  43. Downs ME, Buch A, Sierra C, Karakatasani ME, Teichert T, Chen S, et al. Long-term safety of repeated blood-brain barrier opening via focused ultrasound with microbubbles in non-human primates performing a cognitive task. PLoS One. 2015a;10(5)

  44. Hallett PE. Primary and secondary saccades to goals defined by instructions. Vis Res. 1978;18:1279–96.

    Article  PubMed  CAS  Google Scholar 

  45. Huerta MF, Kaas JH. Supplementary eye field as defined by intracortical microstimulation: connections in macaques. J Comp Neurol. 1990;293(2):299–330. https://doi.org/10.1002/cne.902930211.

    Article  PubMed  CAS  Google Scholar 

  46. Monti MM, Schnakers C, Korb AS, Bystritsky A, Vespa PM. (2016) Non-invasive ultrasonic thalamic stimulation in disorders of consciousness after severe brain injury: a first-in-man report. Brain Stimul 9(6):940–941. doi: https://doi.org/10.1016/j.brs.2016.07.008. PubMed.

  47. Legon W, Rowlands A, Opitz A, Sato TF, Tyler WJ. Pulsed ultrasound differentially stimulates somatosensory circuits in humans as indicated by EEG and FMRI. PLoS One. 2012;7(12):e51177. https://doi.org/10.1371/journal.pone.0051177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Velling VA, Shklyaruk SP. Modulation of the functional state of the brain with the aid of focused ultrasound action. Neurosci Behav Physiol. 1988;18(5):369–75.

    Article  PubMed  CAS  Google Scholar 

  49. Kubanek J, Shi J, Marsh J, Chen D, Deng C, Cui J. Ultrasound modulates ion channel currents. Sci Rep. 2016;6:24170. https://doi.org/10.1038/srep24170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kubanek J, Shukla P, Das A, Baccus SA, Goodan MB. Ultrasound elicits behavioral responses through mechanical effects on neurons and ion channels in a simple nervous system. J Neurosci. 2018;38(12):3081–91. https://doi.org/10.1523/jneurosci.1458-17.2018.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Ye PP, Brown JR, Pauly KB. Frequency dependence of ultrasound neurostimulation in the mouse brain. Ultrasound Med Biol. 2016;42(7):1512–30. https://doi.org/10.1016/j.ultrasmedbio.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kamimura H, Wang S, Chen H, Wang Q, Auraup C, Acosta C, et al. Pupil dilation and motor response elicitation by ultrasound neuromodulation. IEEE International Ultrasonics Symposium Proceedings 2015. https://doi.org/10.1109/ULTSYM.2015.0070

  53. Gulick DW, Li T, Kleim JA, Towe BC. Comparison of electrical and ultrasound neurostimulation in rat motor cortex. Ultrasound in Med Biol. 2017;43(12):2824–33. https://doi.org/10.1016/j.ultrasmedbio.2017.08.937.

    Article  Google Scholar 

  54. Han S, Kim M, Kim H, Shin H, Youn I. Ketamine inhibits ultrasound stimulation-induced neuromodulation by blocking cortical neuron activity. Ultrasound Med Biol. 2018;44(3):635–46.

    Article  PubMed  Google Scholar 

  55. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology. 2001;220(3):640–6.

  56. Choi JJ, Pernot M, Small S, Konofagou EE. Non-invasive, transcranial, and localized opening of the blood-brain barrier in mice using focused ultrasound—a feasibility study. Ultrasound in Med Biol. 2007;33:95–104.

    Article  Google Scholar 

  57. Bakay L, Ballantine HT Jr, Hueter TF, Sosa D. Ultrasonically produced changes in the blood-brain barrier. AMA Arch Neurol Psychiatry. 1956;76(5):457–67.

  58. Vykhodtseva NI, Hynynen K, Damianou C. Histologic effects of high intensity pulsed ultrasound exposure with subharmonic emission in rabbit brain in vivo. Ultrasound Med Biol. 1995;21(7):969-79.

  59. Abbott NJ. Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013;36:437–49. https://doi.org/10.1007/s10545-013-9608-0.

    Article  PubMed  CAS  Google Scholar 

  60. Tung Y., Vlachos, F., Selert K. and Konofagou E.E., In vivo transcranial cavitation threshold detection during ultrasound-induced blood-brain barrier opening, Phys. Med. Biol, 55(20): 6141–6155, 2010.

  61. Tung Y-S, Marquet F, Teichert T, Ferrera V, Konofagou EE. Feasibility of noninvasive cavitation-guided blood-brain barrier opening using focused ultrasound and microbubbles in nonhuman primates. Appl Phys Lett. 2011;98

  62. Arvanitis CD, Livingstone MS, McDannold N. Combined ultrasound and MR imaging to guide focused ultrasound therapies in the brain. Phys Med Biol. 2013;58:4749–61. https://doi.org/10.1088/0031-9155/58/14/4749.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Marquet F, Tung Y-S, Teichert T., Ferrera V., Konofagou E.E. (2011) Noninvasive, transient and selective blood-brain barrier opening in non-human primates in vivo, PLoS One 6(7):e225982011.

  64. Marquet F, Teichert T, Wu S-W, Tung Y-S, Downs M, Wang S, et al. Real-time, transcranial monitoring of safe blood-brain barrier opening in non-human primates. PLoS One. 2014;9(2):e84310. https://doi.org/10.1371/journal.pone.0084310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. McDannold N, Arvanitis CD, Vykhodtseva N, Livingstone MS. Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques. Cancer Res. 2012;72(14):3652–63. https://doi.org/10.1158/0008-5472.CAN-12-0128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Downs ME, Buch A, Karakatsani ME, Konofagou EE, Ferrera VP. Blood-brain barrier opening in behaving non-human primates via focused ultrasound with systemically administered microbubbles. Sci Rep. 2015b;5:15076.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. • Downs ME, Teichert T, Buch A, Karakatsani ME, Sierra C, Chen S, Konofagou EE, Ferrera VP (2017) Toward a cognitive neural prosthesis using focused ultrasound. Frontiers in Neuroscience, 11:607. This study demonstrated performance improvement in a cognitive task 3–4 h after the application of FUS with microbubbles to the dorsal striatum.

  68. Chu P-C, Liu HL, Lai HY, Lin CY, Tsai HC, Pei YC. Neuromodulation accompanying focused ultrasound-induced blood-brain barrier opening. Sci Rep. 2015;5:15477. https://doi.org/10.1038/srep15477.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Samiotaki G, Karakatsani ME, Buch A, Papadopoulos S, Wu S-Y, Jambawalikar S, et al. Pharmocokinetic analysis and drug delivery efficiency of the focused ultrasound-induced blood-brain barrier opening in non-human primates. Magn Reson Imaging. 2017;37:273–81.

    Article  PubMed  CAS  Google Scholar 

  70. Aryal M, Arvanitis CD, Alexander PM, McDannold N. Ultrasound-mediate blood-brain barrier disruption for targeted drug delivery in the central nervous system. Adv Drug Deliv Rev. 2014;72:94–109.

    Article  PubMed  CAS  Google Scholar 

  71. Konofagou EE. Optimization of the ultrasound-induced blood-brain barrier opening. Theranostics. 2012;2(12):1223–37. https://doi.org/10.7150/thno.5576.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. McDannold N, Zhang Y, Power C, Arvanitis CD, Vykhodtseva N, Livingstone M. Targeted, noninvasive blockade of cortical neuronal activity. Sci Rep. 2015;5:16253.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Boonstra E, de Kleijn R, Colzato LS, Alkemade A, Forstmann BU, Neiuwenhuis S. Neurotransmitters at food supplements: the effects of GABA on brain and behavior. Front Psychol. 2015;6:1520. https://doi.org/10.3389/fpsyg.2015.01520.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kovacs ZI, Kim S, Jikaria N, Qureshi F, Milo B, Lewis BK, et al. Disrupting the blood-brain barrier by focused ultrasound induces sterile inflammation. Proc Natl Acad Sci. 2017;114(1):E75–84. https://doi.org/10.1073/pnas.1614777114.

    Article  PubMed  CAS  Google Scholar 

  75. Husseini GA, Kherbeck L, Pitt WG, Hubbell JA, Christensen DA, Velluto D. Kinetics of ultrasonic drug delivery from targeted micelles. J Nanosci Nanotechnol. 2014a;14:1–6.

    Article  CAS  Google Scholar 

  76. Husseini GA, Pitt WG, Martins AM. (2014b) Ultrasonically triggered drug delivery: breaking the barrier. Colloids Surf B Biointerfaces. 1;123:364–86. https://doi.org/10.1016/j.colsurfb.2014.07.051.

  77. Airan RD, Meyer RA, Ellens NPK, Rhodes KR, Farahani K, Pomper MG, et al. Noninvasive targeted transcranial neuromodulation via focused ultrasound gated drug release from nanoemulsions. Nano Lett. 2017;17(2):652–9. https://doi.org/10.1021/acs.nanolett.6b03517.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Wu S-Y, Fix SM, Arena CB, Chen CC, Zheng W, Olumolade OO, et al. Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporaization efficiency dictates large molecular delivery. Phys Med Biol. 2018;63(3):035002. https://doi.org/10.1088/1361-6560/aaa30d.

    Article  PubMed  Google Scholar 

  79. Thévenot E, Jordão JF, O’Reilly MA, Markham K, Weng Y-Q, Foust KD, et al. Targeted delivery of self-complementary adeno-associated virus serotype 9 to the brain, using magnetic resonance imaging-guided focused ultrasound. Hum Gene Ther. 2012;23(11):1144–55. https://doi.org/10.1089/hum.2012.013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Masamizu Y, Okada T, Kawasaki K, Ishibashi H, Yuasa S, Takeda S, et al. Local and retrograde gene transfer into primate neuronal pathways via adeno-associated virus serotype 8 and 9. Neuroscience. 2011;13(193):249–58. https://doi.org/10.1016/j.neuroscience.2011.06.080.

    Article  CAS  Google Scholar 

  81. Hsu P-H, Wei K-C, Huang C-Y, Wen C-J, Yen T-C, Liu C-L, et al. Noninvasive and targeted gene delivery into the brain using microbubble-facilitated focused ultrasound. PLoS One. 2013;8(2):e57682. https://doi.org/10.1371/journal.pone.0057682.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Alonso A, Reinz E, Leuchs B, Kleinschmidt J, Fatar M, Geers B, Lentacker I, Hennerici MG, de Smedt SC and Meairs S. (2013) Focal delivery of AAV2/1-transgenes into the rat brain by localized ultrasound-induced BBB opening. Mol Ther Nucleic Acids 2:e73. https://doi.org/10.1038/mtna.2012.64.

  83. Wang S, Olumolade OO, Sun T, Samiotaki G, Konofagou EE. Noninvasive, neuron-specific gene therapy can be facilitated by focused ultrasound and recombinant adeno-associated virus. Gene Ther. 2015;22(1):104–10. https://doi.org/10.1038/gt.2014.91.

    Article  PubMed  CAS  Google Scholar 

  84. Wang S, Buch A, Acosta C, Olumolade O, Syed H, Duff K, et al. Non-invasive, focused ultrasound-facilitated gene delivery for optogenetics. Sci Rep. 2017;7:39955.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Szablowski JO, Lue B, Lee-Gosselin A, Malounda D, Shapiro MG. Acoustically targeted chemogenetics for noninvasive control of neural circuits, 2018. bioRxiv 241406; https://doi.org/10.1101/241406

  86. Mead BP, Mastorakos P, Suk JS, Klibanov AL, Hanes J, Price RJ. Targeted gene transfer to the brain via the delivery of brain-penetrating DNA nanoparticles with focused ultrasound. J Control Release Off J Control Release Soc. 2016;10(223):109–17. https://doi.org/10.1016/jjconrel.2015.12.034.

    Article  Google Scholar 

  87. Mead BP, Kim N, Miller GW, Hodges D, Mastorakos P, Klibanov AL, et al. Novel focused ultrasound gene therapy approach noninvasively restores dopaminergic neuron function in a rat Parkinson’s disease model. Nano Lett. 2017;17(6):3533–42. https://doi.org/10.1021/acs.nanolett.7b00616.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. Karakatsani ME, Samiotaki G, Downs M, Ferrera V, Konofagou E (2017) Targeting Effects on the volume of the focused ultrasound induced blood-brain barrier opening in non-human primates in vivo. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. In Press.

  89. Younan Y, Deffieux T, Larrat B, Fink M, Tanter M, Aubry J-F. Influence of the pressure field distribution in transcranial ultrasonic neurostimulation. Med Phys. 2012;40(8):082902. https://doi.org/10.1118/1.4812423.

    Article  Google Scholar 

  90. Mueller JK, Ai L, Bansal P, Legon W. Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound. (2017) J Neural Eng. 14(6):066012. https://doi.org/10.1088/1741-2552/aa843e.

  91. Wu S-Y, Aurup C, Sánchez CS, Grondin J, Zheng W, Kamimura H, Ferrera VP, Konofagou EE. Efficient Blood-Brain Barrier Opening in Primates with Neuronavigation-Guided Ultrasound and Real-Time Monitoring, Nature Scientific Reports. 2018 (accepted).

  92. Wu S-Y, Sanchez CS, Samiotaki G, Buch A, Ferrera VP, Konofagou EE. Characterizing focused-ultrasound mediated drug delivery to the heterogeneous primate brain in vivo with acoustic monitoring. Nature Scientific Reports. 2016;6:37094.

    Article  CAS  Google Scholar 

Download references

Funding

NIH R01MH059244 (VPF); Kavli Foundation (VPF); Brain & Behavior Research Foundation (VPF); NIH R01MH112142 (VPF, EEK); NIH R01AG038961 (EEK); NIH R01EB009041 (EEK); Wallace H. Coulter Foundation (EEK); FUS Foundation (EEK). The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Contributions

F.M., C.A., E.E.K., and V.P.F. participated in manuscript writing.

Corresponding author

Correspondence to Vincent P. Ferrera.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any primary data from human or animal subjects.

Additional information

This article is part of the Topical Collection on Neuromodulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munoz, F., Aurup, C., Konofagou, E.E. et al. Modulation of Brain Function and Behavior by Focused Ultrasound. Curr Behav Neurosci Rep 5, 153–164 (2018). https://doi.org/10.1007/s40473-018-0156-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40473-018-0156-7

Keywords

Navigation