Skip to main content

Advertisement

Log in

What Effect Does tDCS Have on the Brain? Basic Physiology of tDCS

  • Neuromodulation (C Stagg, Section Editor)
  • Published:
Current Behavioral Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Transcranial direct current stimulation (tDCS) can effectively modulate a wide range of clinical and cognitive outcomes by modulating cortical excitability. Here, we summarize the main findings from both animal and human neurophysiology literature, which have revealed mechanistic evidence for the acute and neuroplastic after-effects of tDCS.

Recent Findings

Insights into the magnitude and geometric orientation of transcranially induced currents have been provided by the combination of computational modeling of current flow in animal slice preparations and intracranial recordings in humans. In addition to its synaptic effects, stimulation also induces after-effects on the glial and vascular systems, the latter also observed in humans by magnetic resonance imaging. Several studies have also observed non-linear or antagonistic effects of tDCS parameters, which warrants further systematic studies to explore and understand the basic mechanisms.

Summary

tDCS is a valuable and promising technique across the neurophysiological, cognitive neuroscience, and clinical domains of research. Primary and secondary effects of tDCS still remain to be completely understood. An important challenge for the field is advancing tDCS protocols forward for optimal intervention and treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2016;127:1031–48. https://doi.org/10.1016/j.clinph.2015.11.012.

    Article  CAS  PubMed  Google Scholar 

  2. Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 2016;9:641–61. https://doi.org/10.1016/j.brs.2016.06.004.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lefaucheur J-P, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2016;128:56–92. https://doi.org/10.1016/j.clinph.2016.10.087.

    Article  PubMed  Google Scholar 

  4. Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neurosci. 2011;17:37–53.

    Google Scholar 

  5. Batsikadze G, Moliadze V, Paulus W, Kuo M-F, Nitsche MA. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol. 2013;591:1987–2000. https://doi.org/10.1113/jphysiol.2012.249730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Monte-Silva K, Kuo M-F, Liebetanz D, Paulus W, Nitsche MA. Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS). J Neurophysiol. 2010;103:1735–40. https://doi.org/10.1152/jn.00924.2009.

    Article  PubMed  Google Scholar 

  7. Monte-Silva K, Kuo MF, Hessenthaler S, Fresnoza S, Liebetanz D, Paulus W, et al. Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimul. 2013;6:424–32. https://doi.org/10.1016/j.brs.2012.04.011.

    Article  PubMed  Google Scholar 

  8. Jamil A, Batsikadze G, Kuo H-I, Labruna L, Hasan A, Paulus W, et al. Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation. J Physiol. 2016:1–16. doi:https://doi.org/10.1113/JP272738.

  9. Priori A, Berardelli A, Rona S, Accornero N, Manfredi M. Polarization of the human motor cortex through the scalp. Neuroreport. 1998;9:2257–60. https://doi.org/10.1097/00001756-199807130-00020.

    Article  CAS  PubMed  Google Scholar 

  10. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kellaway P. The part played by electric fish in the early history of bioelectricity and electrotherapy. Bull Hist Med. 1946;20:112–37.

    CAS  PubMed  Google Scholar 

  12. Priori A. Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin Neurophysiol. 2003;114:589–95.

    Article  PubMed  Google Scholar 

  13. Nitsche MA, Liebetanz D, Antal A, Lang N, Tergau F, Paulus W. Chapter 27 modulation of cortical excitability by weak direct current stimulation—technical, safety and functional aspects. Suppl Clin Neurophysiol. 2003;56:255–76. https://doi.org/10.1016/S1567-424X(09)70230-2.

    Article  PubMed  Google Scholar 

  14. Terzuolo CA, Bullock TH. Measurement of imposed voltage gradient adequate to modulate neuronal firing. Proc Natl Acad Sci U S A. 1956;42:687–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bindman LJ, Lippold OCJ, Redfearn JWT. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol. 1964;172:369–82. https://doi.org/10.1234/12345678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Purpura DP, McMurtry JG. Intracellular activities and evoked potential changes during of motor cortex. Neurophysiology. 1965;28:166–85.

    CAS  PubMed  Google Scholar 

  17. Hebb D. The organization of behavior. A neuropsychological theory Organ Behav. 1949;911:335. https://doi.org/10.2307/1418888.

    Google Scholar 

  18. Rahman A, Reato D, Arlotti M, Gasca F, Datta A, Parra LC, et al. Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. J Physiol. 2013;591:2563–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol. 2004;557:175–90. https://doi.org/10.1113/jphysiol.2003.055772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Creutzfeldt OD, Fromm GH, Kapp H. Influence of transcortical d-c currents on cortical neuronal activity. Exp Neurol. 1962;5:436–52. https://doi.org/10.1016/0014-4886(62)90056-0.

    Article  CAS  PubMed  Google Scholar 

  21. Kabakov AY, Muller PA, Pascual-Leone A, Jensen FE, Rotenberg A, Antal A, et al. Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus. J Neurophysiol. 2012;107:1881–9. https://doi.org/10.1152/jn.00715.2011.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Radman T, Ramos RL, Brumberg JC, Bikson M. Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul. 2009;2:215–228.e3. https://doi.org/10.1016/j.brs.2009.03.007.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Radman T, Su Y, An JH, Parra LC, Bikson M. Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects. J Neurosci. 2007;27:3030–6. https://doi.org/10.1523/JNEUROSCI.0095-07.2007.

    Article  CAS  PubMed  Google Scholar 

  24. Anastassiou CA, Montgomery SM, Barahona M, Buzsaki G, Koch C. The effect of spatially inhomogeneous extracellular electric fields on neurons. J Neurosci. 2010;30:1925–36. https://doi.org/10.1523/JNEUROSCI.3635-09.2010.

    Article  CAS  PubMed  Google Scholar 

  25. Miranda PC, Lomarev M, Hallett M. Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol. 2006;117:1623–9.

    Article  PubMed  Google Scholar 

  26. Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57:1899–901. https://doi.org/10.1212/WNL.57.10.1899.

    Article  CAS  PubMed  Google Scholar 

  27. Nitsche MA, Nitsche MS, Klein CC, Tergau F, Rothwell JC, Paulus W. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol. 2003;114:600–4. https://doi.org/10.1016/S1388-2457(02)00412-1.

    Article  PubMed  Google Scholar 

  28. LIPPOLD OC, REDFEARN JW. Mental changes resulting from the passage of small direct currents through the human brain. Br J Psychiatry. 1964;110:768–72. https://doi.org/10.1192/bjp.110.469.768.

    Article  CAS  PubMed  Google Scholar 

  29. REDFEARN JW, LIPPOLD OC, COSTAIN R. A preliminary account of the clinical effects of polarizing the brain in certain psychiatric disorders. Br J Psychiatry. 1964;110:773–85.

    Article  CAS  PubMed  Google Scholar 

  30. Elbert T, Lutzenberger W, Rockstroh B, Birbaumer N. The influence of low-level transcortical DC-currents on response speed in humans. Int J Neurosci. 1981;14:101–14.

    Article  CAS  PubMed  Google Scholar 

  31. Jaeger D, Elbert T, Lutzenberger W, Birbaumer N. The effects of externally applied transcephalic weak direct currents on lateralization in choice reaction tasks. J Psychophysiol. 1987;1:127–33.

    Google Scholar 

  32. Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet (London, England). 1985;1:1106–7.

    Article  CAS  Google Scholar 

  33. Rothwell JC. Evoked potentials, magnetic stimulation studies, and event-related potentials. Curr Opin Neurol. 1993;6:715–23. https://doi.org/10.1097/00019052-199310000-00007.

    Article  CAS  PubMed  Google Scholar 

  34. Nitsche MA, Fricke K, Henschke U, Schlitterlau A, Liebetanz D, Lang N, et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol. 2003;553:293–301. https://doi.org/10.1113/jphysiol.2003.049916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nitsche MA, Liebetanz D, Schlitterlau A, Henschke U, Fricke K, Frommann K, et al. GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans. Eur J Neurosci. 2004;19:2720–6. https://doi.org/10.1111/j.0953-816X.2004.03398.x.

    Article  PubMed  Google Scholar 

  36. Nitsche MA, Seeber A, Frommann K, Klein CC, Rochford C, Nitsche MS, et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J Physiol. 2005;568:291–303. https://doi.org/10.1113/jphysiol.2005.092429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Quartarone A, Siebner HR, Rothwell JC. Task-specific hand dystonia: can too much plasticity be bad for you? Trends Neurosci. 2006;29:192–9. https://doi.org/10.1016/j.tins.2006.02.007.

    Article  CAS  PubMed  Google Scholar 

  38. Gartside IB. Mechanisms of sustained increases of firing rate of neurones in the rat cerebral cortex after polarization: role of protein synthesis. Nature. 1968;220:383–4.

    Article  CAS  PubMed  Google Scholar 

  39. Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 2010;66:198–204. https://doi.org/10.1016/j.neuron.2010.03.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ranieri F, Podda MV, Riccardi E, Frisullo G, Dileone M, Profice P, et al. Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation. J Neurophysiol. 2012;107:1868–80. https://doi.org/10.1152/jn.00319.2011.

    Article  CAS  PubMed  Google Scholar 

  41. Islam N, Aftabuddin M, Moriwaki A, Hattori Y, Hori Y. Increase in the calcium level following anodal polarization in the rat brain. Brain Res. 1995;684:206–8. https://doi.org/10.1016/0006-8993(95)00434-R.

    Article  CAS  PubMed  Google Scholar 

  42. Islam N, Moriwaki A, Hattori Y, Hayashi Y, Lu Y-F, Hori Y. c-Fos expression mediated by N-methyl-d-aspartate receptors following anodal polarization in the rat brain. Exp Neurol. 1995;133:25–31. https://doi.org/10.1006/exnr.1995.1004.

    Article  CAS  PubMed  Google Scholar 

  43. Hattori Y, Moriwaki A, Hori Y. Biphasic effects of polarizing current on adenosine-sensitive generation of cyclic AMP in rat cerebral cortex. Neurosci Lett. 1990;116:320–4.

    Article  CAS  PubMed  Google Scholar 

  44. Márquez-Ruiz J, Leal-Campanario R, Sánchez-Campusano R, Molaee-Ardekani B, Wendling F, Miranda PC, et al. Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits. Proc Natl Acad Sci U S A. 2012;109:6710–5. https://doi.org/10.1073/pnas.1121147109.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Winnubst J, Cheyne JE, Niculescu D, Lohmann C. Spontaneous activity drives local synaptic plasticity invivo. Neuron. 2015;87:399–411. https://doi.org/10.1016/j.neuron.2015.06.029.

    Article  CAS  PubMed  Google Scholar 

  46. Koo H, Kim MS, Han SW, Paulus W, Nitche MA, Kim YH, et al. After-effects of anodal transcranial direct current stimulation on the excitability of the motor cortex in rats. Restor Neurol Neurosci. 2016;34:859–68. https://doi.org/10.3233/RNN-160664.

    PubMed  Google Scholar 

  47. Antal A, Terney D, Poreisz C, Paulus W. Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex. Eur J Neurosci. 2007;26:2687–91. https://doi.org/10.1111/j.1460-9568.2007.05896.x.

    Article  PubMed  Google Scholar 

  48. Del Zoppo GJ. The neurovascular unit, matrix proteases, and innate inflammation. Ann N Y Acad Sci. 2010;1207:46–9. https://doi.org/10.1111/j.1749-6632.2010.05760.x.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wachter D, Wrede A, Schulz-Schaeffer W, Taghizadeh-Waghefi A, Nitsche MA, Kutschenko A, et al. Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat. Exp Neurol. 2011;227:322–7. https://doi.org/10.1016/j.expneurol.2010.12.005.

    Article  PubMed  Google Scholar 

  50. Han C-H, Song H, Kang Y-G, Kim B-M, Im C-H. Hemodynamic responses in rat brain during transcranial direct current stimulation: a functional near-infrared spectroscopy study. Biomed Opt Express. 2014;5:1812–21. https://doi.org/10.1364/BOE.5.001812.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Berliner MN. Skin microcirculation during tapwater iontophoresis in humans: cathode stimulates more than anode. Microvasc Res. 1997;54:74–80. https://doi.org/10.1006/mvre.1997.2025.

    Article  CAS  PubMed  Google Scholar 

  52. Durand S, Fromy B, Bouye P, Saumet JL, Abraham P. Vasodilatation in response to repeated anodal current application in the human skin relies on aspirin-sensitive mechanisms. J Physiol. 2002;540:261–9. https://doi.org/10.1113/jphysiol.2001.013364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Monai H, Ohkura M, Tanaka M, Mikoshiba K, Itohara S, Nakai J, et al. Calcium imaging reveals glial involvement in transcranial direct current stimulation ( tDCS )-induced plasticity. Under Rev. 2015;7:1–11. https://doi.org/10.1038/ncomms11100.

    Google Scholar 

  54. Agulhon C, Petravicz J, Mcmullen AB, Sweger EJ, Minton K, Taves SR, et al. What is the role of astrocyte calcium in neurophysiology? Neuron. 2013;59:932–46. https://doi.org/10.1016/j.neuron.2008.09.004.What.

    Article  Google Scholar 

  55. Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron. 2004;44:5–21. https://doi.org/10.1016/j.neuron.2004.09.012.

    Article  CAS  PubMed  Google Scholar 

  56. Liebetanz D, Nitsche MA, Tergau F, Paulus W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain. 2002;125:2238–47. https://doi.org/10.1093/brain/awf238.

    Article  PubMed  Google Scholar 

  57. Nitsche MA, Jaussi W, Liebetanz D, Lang N, Tergau F, Paulus W. Consolidation of human motor cortical neuroplasticity by D-cycloserine. Neuropsychopharmacology. 2004;29:1573–8. https://doi.org/10.1038/sj.npp.1300517.

    Article  CAS  PubMed  Google Scholar 

  58. Stagg CJ, Best JG, Stephenson MC, O’Shea J, Wylezinska M, Kincses ZT, et al. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci. 2009;29:5202–6. https://doi.org/10.1523/JNEUROSCI.4432-08.2009.

    Article  CAS  PubMed  Google Scholar 

  59. Nitsche MA, Müller-Dahlhaus F, Paulus W, Ziemann U. The pharmacology of neuroplasticity induced by non-invasive brain stimulation: building models for the clinical use of CNS active drugs. J Physiol. 2012;590:4641–62. https://doi.org/10.1113/jphysiol.2012.232975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fresnoza S, Stiksrud E, Klinker XF, Liebetanz D, Paulus W, Kuo M, et al. Dosage-dependent effect of dopamine D 2 receptor activation on motor cortex plasticity in humans. J Neurosci. 2014;34:10701–9. https://doi.org/10.1523/JNEUROSCI.0832-14.2014.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Grundey J, Thirugnanasambandam N, Kaminsky K, Drees A, Skwirba AC, Lang N, et al. Neuroplasticity in cigarette smokers is altered under withdrawal and partially restituted by nicotine exposition. J Neurosci. 2012;32:4156–62. https://doi.org/10.1523/JNEUROSCI.3660-11.2012.

    Article  CAS  PubMed  Google Scholar 

  62. Kuo MF, Unger M, Liebetanz D, Lang N, Tergau F, Paulus W, et al. Limited impact of homeostatic plasticity on motor learning in humans. Neuropsychologia. 2008;46:2122–8. https://doi.org/10.1016/j.neuropsychologia.2008.02.023.

    Article  PubMed  Google Scholar 

  63. Kuo H-I, Paulus W, Batsikadze G, Jamil A, Kuo M-F, Nitsche MA. Acute and chronic effects of noradrenergic enhancement on transcranial direct current stimulation (tDCS)-induced neuroplasticity in humans. J Physiol. 2016; https://doi.org/10.1113/JP273137.

  64. Antal A, Kincses TZ, Nitsche MA, Bartfai O, Paulus W. Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. Invest Ophthalmol Vis Sci. 2004;45:702–7. https://doi.org/10.1167/iovs.03-0688.

    Article  PubMed  Google Scholar 

  65. Accornero N, Li Voti P, La Riccia M, Gregori B. Visual evoked potentials modulation during direct current cortical polarization. Exp Brain Res. 2007;178:261–6. https://doi.org/10.1007/s00221-006-0733-y.

    Article  PubMed  Google Scholar 

  66. Matsunaga K, Nitsche MA, Tsuji S, Rothwell JC. Effect of transcranial DC sensorimotor cortex stimulation on somatosensory evoked potentials in humans. Clin Neurophysiol. 2004;115:456–60.

    Article  PubMed  Google Scholar 

  67. Dieckhöfer A, Waberski TD, Nitsche M, Paulus W, Buchner H, Gobbelé R. Transcranial direct current stimulation applied over the somatosensory cortex—differential effect on low and high frequency SEPs. Clin Neurophysiol. 2006;117:2221–7. https://doi.org/10.1016/j.clinph.2006.07.136.

    Article  PubMed  Google Scholar 

  68. Zaehle T, Beretta M, Jäncke L, Herrmann CS, Sandmann P. Excitability changes induced in the human auditory cortex by transcranial direct current stimulation: direct electrophysiological evidence. Exp Brain Res. 2011;215:135–40. https://doi.org/10.1007/s00221-011-2879-5.

    Article  PubMed  Google Scholar 

  69. Lang N, Siebner HR, Ward NS, Lee L, Nitsche MA, Paulus W, et al. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci. 2005;22:495–504. https://doi.org/10.1111/j.1460-9568.2005.04233.x.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zheng X, Alsop DC, Schlaug G. Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow. NeuroImage. 2011;58:26–33.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Stagg CJ, Lin RL, Mezue M, Segerdahl A, Kong Y, Xie J, et al. Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex. J Neurosci. 2013;33:11425–31. https://doi.org/10.1523/JNEUROSCI.3887-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Notturno F, Marzetti L, Pizzella V, Uncini A, Zappasodi F. Local and remote effects of transcranial direct current stimulation on the electrical activity of the motor cortical network. Hum Brain Mapp. 2014;35:2220–32. https://doi.org/10.1002/hbm.22322.

    Article  PubMed  Google Scholar 

  73. Roy A, Baxter B, He B. High-definition transcranial direct current stimulation induces both acute and persistent changes in broadband cortical synchronization: a simultaneous tDCS-EEG study. IEEE Trans Biomed Eng. 2014;61:1967–78. https://doi.org/10.1109/TBME.2014.2311071.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Polanía R, Nitsche MA, Paulus W. Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum Brain Mapp. 2011;32:1236–49. https://doi.org/10.1002/hbm.21104.

    Article  PubMed  Google Scholar 

  75. Polanía R, Paulus W, Nitsche MA. Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum Brain Mapp. 2012;33:2499–508. https://doi.org/10.1002/hbm.21380.

    Article  PubMed  Google Scholar 

  76. Lisman JE. Three Ca2+ levels affect plasticity differently: the LTP zone, the LTD zone and no man’s land. J Physiol. 2001;532:285. https://doi.org/10.1111/j.1469-7793.2001.0285f.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cho K, Aggleton JP, Brown MW, Bashir ZI. An experimental test of the role of postsynaptic calcium levels in determining synaptic strength using perirhinal cortex of rat. J Physiol. 2001;532:459–66. https://doi.org/10.1111/j.1469-7793.2001.0459f.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Misonou H, Mohapatra DP, Park EW, Leung V, Zhen D, Misonou K, et al. Regulation of ion channel localization and phosphorylation by neuronal activity. Nat Neurosci. 2004;7:711–8. https://doi.org/10.1038/nn1260.

    Article  CAS  PubMed  Google Scholar 

  79. Valero-Cabré A, Pascual-Leone A, Rushmore RJ. Cumulative sessions of repetitive transcranial magnetic stimulation (rTMS) build up facilitation to subsequent TMS-mediated behavioural disruptions. Eur J Neurosci. 2008;27:765–74. https://doi.org/10.1111/j.1460-9568.2008.06045.x.

    Article  PubMed  Google Scholar 

  80. Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009;2:201–207.e1. https://doi.org/10.1016/j.brs.2009.03.005.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ruffini G, Fox MD, Ripolles O, Miranda PC, Pascual-Leone A. Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields. NeuroImage. 2014;89:216–25. https://doi.org/10.1016/j.neuroimage.2013.12.002.

    Article  PubMed  Google Scholar 

  82. Kuo HI, Bikson M, Datta A, Minhas P, Paulus W, Kuo MF, et al. Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: a neurophysiological study. Brain Stimul. 2013;6:644–8. https://doi.org/10.1016/j.brs.2012.09.010.

    Article  PubMed  Google Scholar 

  83. Huang Y, Liu AA, Lafon B, Friedman D, Dayan M, Wang X, et al. Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation. elife. 2017;6:1–27. https://doi.org/10.7554/eLife.18834.

    Google Scholar 

  84. Opitz A, Falchier A, Yan C, Yeagle E, Linn G. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in human and nonhuman primates. Sci Rep. 2016;6:1–11. https://doi.org/10.1101/053892.

    Article  Google Scholar 

  85. Chew T, Ho K-A, Loo CK. Inter- and intra-individual variability in response to transcranial direct current stimulation (tDCS) at varying current intensities. Brain Stimul. 2015:1–8. https://doi.org/10.1016/j.brs.2015.07.031.

  86. López-Alonso V, Cheeran B, Río-Rodríguez D, Fernández-Del-Olmo M. Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimul. 2014;7:372–80. https://doi.org/10.1016/j.brs.2014.02.004.

    Article  PubMed  Google Scholar 

  87. Wiethoff S, Hamada M, Rothwell JC. Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimul. 2014;7:468–75. https://doi.org/10.1016/j.brs.2014.02.003.

    Article  PubMed  Google Scholar 

  88. Labruna L, Jamil A, Fresnoza S, Batsikadze G, Kuo MF, Vanderschelden B, et al. Efficacy of anodal transcranial direct current stimulation is related to sensitivity to transcranial magnetic stimulation. Brain Stimul. 2016;9:8–15. https://doi.org/10.1016/j.brs.2015.08.014.

    Article  PubMed  Google Scholar 

  89. Li LM, Uehara K, Hanakawa T. The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front Cell Neurosci. 2015;9:181. https://doi.org/10.3389/fncel.2015.00181.

    PubMed  PubMed Central  Google Scholar 

  90. Ridding MC, Ziemann U. Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J Physiol. 2010;588:2291–304. https://doi.org/10.1113/jphysiol.2010.190314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Fatemeh Yavari and Dr. Charlotte Stagg for providing helpful comments on earlier drafts of the manuscript.

Funding

MAN received support from the EC Horizon 2020 Program, FET Grant, 686764-LUMINOUS, and grants from the German Ministry of Research and Education (GCBS grant 01EE1403C, TRAINSTIM grant 01GQ1424E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asif Jamil.

Ethics declarations

Conflict of Interest

Dr. Jamil has nothing to disclose. Dr. Nitsche is a member of the Advisory Board of Neuroelectrics.

Human and Animal Rights

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Neuromodulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamil, A., Nitsche, M.A. What Effect Does tDCS Have on the Brain? Basic Physiology of tDCS. Curr Behav Neurosci Rep 4, 331–340 (2017). https://doi.org/10.1007/s40473-017-0134-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40473-017-0134-5

Keywords

Navigation