Skip to main content
Log in

Interventions to Preserve Cognitive Functioning among Older Kidney Transplant Recipients

  • Frailty and Gerontology (M McAdams-DeMarco, Section Editor)
  • Published:
Current Transplantation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To summarize the research on effective interventions for preserving cognitive function and prevent cognitive decline in patients with end-stage kidney disease (ESKD) who are undergoing dialysis and/or kidney transplantation (KT).

Recent Findings

Among ESKD patients undergoing hemodialysis, exercise training has been administered through home-based and intradialytic interventions. Additionally, one pilot study identified intradialytic cognitive training, electronic brain games, as an intervention to preserve cognitive function among patients undergoing hemodialysis. Fewer studies have investigated interventions to preserver cognitive function among KT recipients. To date, the only randomized controlled trial in this population identified B-vitamin supplements as an intervention to preserve cognitive function. The evidence from these trials support a short-term benefit of cognitive and exercise training as well as B-vitamin supplementation among patients with ESKD. Future studies should (1) replicate these findings, (2) identify interventions specific to KT candidates, and (3) investigate the synergistic impact of both cognitive and exercise training.

Summary

Cognitive prehabilitation, with cognitive and/or exercise training, may be novel interventions for KT candidates that not only reduces delirium risk and long-term post-KT cognitive decline but also prevents dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Notable Publications Are Highlighted below

  1. United States Renal Data System. 2016 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States. Bethesda: National Institute of Diabetes and Digestive and Kidney Diseases; 2016.

    Google Scholar 

  2. McAdams-DeMarco MA, James N, Salter ML, Walston J, Segev DL. Trends in kidney transplant outcomes in older adults running header: kidney transplant outcomes in older adults. J Am Geriatr Soc. 2014;62(12):2235–42.

    PubMed  PubMed Central  Google Scholar 

  3. McAdams-DeMarco MA, Rasmussen S, Chu NM, et al. Perceptions and practices regarding frailty in kidney transplantation: results of a National Survey. Transplantation. 2019.

  4. Drew DA, Weiner DE, Tighiouart H, Duncan S, Gupta A, Scott T, et al. Cognitive decline and its risk factors in prevalent hemodialysis patients. Am J Kidney Dis. 2017;69:780–7.

    PubMed  PubMed Central  Google Scholar 

  5. Kurella Tamura M, Vittinghoff E, Hsu CY, Tam K, Seliger SL, Sozio S, et al. Loss of executive function after dialysis initiation in adults with chronic kidney disease. Kidney Int. 2017;91(4):948–53.

    PubMed  PubMed Central  Google Scholar 

  6. Murray AM, Tupper DE, Knopman DS, Gilbertson DT, Pederson SL, Li S, et al. Cognitive impairment in hemodialysis patients is common. Neurology. 2006;67(2):216–23.

    CAS  PubMed  Google Scholar 

  7. O'Lone E, Connors M, Masson P, et al. Cognition in people with end-stage kidney disease treated with hemodialysis: a systematic review and meta-analysis. Am J Kidney Dis. 2016;67(6):925–35.

    PubMed  Google Scholar 

  8. McAdams-DeMarco MA, Tan J, Salter ML, et al. Frailty and cognitive function in incident hemodialysis patients. Clin J Am Soc Nephrol. 2015;10(12):2181–9.

    PubMed  PubMed Central  Google Scholar 

  9. Jones TG, Schinka JA, Vanderploeg RD, Small BJ, Graves AB, Mortimer JA. 3MS normative data for the elderly. Arch Clin Neuropsychol. 2002;17(2):171–7.

    PubMed  Google Scholar 

  10. Kurella Tamura M, Wadley V, Yaffe K, McClure LA, Howard G, Go R, et al. Kidney function and cognitive impairment in US adults: the reasons for geographic and racial differences in stroke (REGARDS) study. Am J Kidney Dis. 2008;52(2):227–34.

    PubMed  PubMed Central  Google Scholar 

  11. Buchman AS, Tanne D, Boyle PA, Shah RC, Leurgans SE, Bennett DA. Kidney function is associated with the rate of cognitive decline in the elderly. Neurology. 2009;73(12):920–7.

    PubMed  PubMed Central  Google Scholar 

  12. Elias MF, Elias PK, Seliger SL, Narsipur SS, Dore GA, Robbins MA. Chronic kidney disease, creatinine and cognitive functioning. Nephrol Dial Transplant. 2009;24(8):2446–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Harciarek M, Williamson JB, Biedunkiewicz B, Lichodziejewska-Niemierko M, Debska-Slizien A, Rutkowski B. Risk factors for selective cognitive decline in dialyzed patients with end-stage renal disease: evidence from verbal fluency analysis. J Int Neuropsychol Soc. 2012;18(1):162–7.

    PubMed  Google Scholar 

  14. Altmann P, Barnett ME, Finn WF, Group SPDLCS. Cognitive function in stage 5 chronic kidney disease patients on hemodialysis: no adverse effects of lanthanum carbonate compared with standard phosphate-binder therapy. Kidney Int. 2007;71(3):252–9.

    CAS  PubMed  Google Scholar 

  15. Zhang YH, Yang ZK, Wang JW, Xiong ZY, Liao JL, Hao L, et al. Cognitive changes in peritoneal Dialysis patients: a multicenter prospective cohort study. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2018;72(5):691–700.

    Google Scholar 

  16. Murray AM. Cognitive impairment in the aging dialysis and chronic kidney disease populations: an occult burden. Adv Chronic Kidney Dis. 2008;15(2):123–32.

    PubMed  PubMed Central  Google Scholar 

  17. Sehgal AR, Grey SF, DeOreo PB, Whitehouse PJ. Prevalence, recognition, and implications of mental impairment among hemodialysis patients. American journal of kidney diseases : the official journal of the National Kidney Foundation. 1997;30(1):41–9.

    CAS  Google Scholar 

  18. Gupta A, Thomas TS, Klein JA, Montgomery RN, Mahnken JD, Johnson DK, et al. Discrepancies between perceived and measured cognition in kidney transplant recipients: implications for clinical management. Nephron. 2018;138(1):22–8.

    PubMed  Google Scholar 

  19. Neumann D, Mau W, Wienke A, Girndt M. Peritoneal dialysis is associated with better cognitive function than hemodialysis over a one-year course. Kidney Int. 2018;93(2):430–8.

    PubMed  Google Scholar 

  20. Harhay MN, Xie D, Zhang X, Hsu CY, Vittinghoff E, Go AS, et al. Cognitive impairment in non-Dialysis-dependent CKD and the transition to Dialysis: findings from the chronic renal insufficiency cohort (CRIC) study. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2018;72(4):499–508.

    Google Scholar 

  21. Ng YH, Al Mawed S, Pankratz VS, et al. Cognitive assessment in a predominantly Hispanic and native American population in New Mexico and its association with kidney transplant wait-listing. Clin Transpl. 2019;33(10):e13674.

    Google Scholar 

  22. Gupta A, Mahnken JD, Johnson DK, Thomas TS, Subramaniam D, Polshak T, et al. Prevalence and correlates of cognitive impairment in kidney transplant recipients. BMC Nephrol. 2017;18(1):158.

    PubMed  PubMed Central  Google Scholar 

  23. Thomas AG, Ruck JM, Shaffer AA, Haugen CE, Ying H, Warsame F, et al. Kidney transplant outcomes in recipients with cognitive impairment: a National Registry and prospective cohort study. Transplantation. 2019;103(7):1504–13.

    PubMed  PubMed Central  Google Scholar 

  24. Joshee P, Wood AG, Wood ER, Grunfeld EA. Meta-analysis of cognitive functioning in patients following kidney transplantation. Nephrology Dialysis Transplantation. 2017:gfx240-gfx240.

  25. Griva K, Thompson D, Jayasena D, Davenport A, Harrison M, Newman SP. Cognitive functioning pre- to post-kidney transplantation--a prospective study. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 2006;21(11):3275–82.

    Google Scholar 

  26. Radic J, Ljutic D, Radic M, Kovacic V, Dodig-Curkovic K, Sain M. Kidney transplantation improves cognitive and psychomotor functions in adult hemodialysis patients. Am J Nephrol. 2011;34(5):399–406.

    PubMed  Google Scholar 

  27. Kramer L, Madl C, Stockenhuber F, Yeganehfar W, Eisenhuber E, Derfler K, et al. Beneficial effect of renal transplantation on cognitive brain function. Kidney Int. 1996;49(3):833–8.

    CAS  PubMed  Google Scholar 

  28. Dixon BS, VanBuren JM, Rodrigue JR, et al. Cognitive changes associated with switching to frequent nocturnal hemodialysis or renal transplantation. BMC Nephrol. 2016;17:12.

    PubMed  PubMed Central  Google Scholar 

  29. Harciarek M, Biedunkiewicz B, Lichodziejewska-Niemierko M, Debska-Slizien A, Rutkowski B. Continuous cognitive improvement 1 year following successful kidney transplant. Kidney Int. 2011;79(12):1353–60.

    PubMed  Google Scholar 

  30. Chu NM, Gross AL, Shaffer AA, et al. Frailty and Cognitive Change Among Kidney Transplant Recipients—Failure to Recover to Baseline Levels. J Am Soc Nephrol. 2018; in press.

  31. Kurella Tamura M, Larive B, Unruh ML, et al. Prevalence and correlates of cognitive impairment in hemodialysis patients: the frequent hemodialysis network trials. Clin J Am Soc Nephrol. 2010;5(8):1429–38.

    PubMed  Google Scholar 

  32. Levine B, Stuss DT, Winocur G, Binns MA, Fahy L, Mandic M, et al. Cognitive rehabilitation in the elderly: effects on strategic behavior in relation to goal management. J Int Neuropsychol Soc. 2007;13(1):143–52.

    PubMed  Google Scholar 

  33. Mahncke HW, Connor BB, Appelman J, Ahsanuddin ON, Hardy JL, Wood RA, et al. Memory enhancement in healthy older adults using a brain plasticity-based training program: a randomized, controlled study. Proc Natl Acad Sci U S A. 2006;103(33):12523–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cepeda NJ, Kramer AF. Gonzalez de Sather JC. Changes in executive control across the life span: examination of task-switching performance. Dev Psychol. 2001;37(5):715–30.

    CAS  PubMed  Google Scholar 

  35. Griva K, Stygall J, Hankins M, Davenport A, Harrison M, Newman SP. Cognitive impairment and 7-year mortality in dialysis patients. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2010;56(4):693–703.

    Google Scholar 

  36. Tombaugh TN. Trail making test a and B: normative data stratified by age and education. Arch Clin Neuropsychol. 2004;19(2):203–14.

    PubMed  Google Scholar 

  37. Sánchez-Fernández MDM, Reyes Del Paso GA, Gil-Cunquero JM, Fernández-Serrano MJ. Executive function in end-stage renal disease: acute effects of hemodialysis and associations with clinical factors. PLoS One. 2018;13(9):e0203424-e0203424.

    Google Scholar 

  38. Kurella M, Chertow GM, Luan J, Yaffe K. Cognitive impairment in chronic kidney disease. J Am Geriatr Soc. 2004;52(11):1863–9.

    PubMed  Google Scholar 

  39. Sharma A, Yabes J, Al Mawed S, et al. Impact of cognitive function change on mortality in renal transplant and end-stage renal disease patients. Am J Nephrol. 2016;44(6):462–72.

    PubMed  PubMed Central  Google Scholar 

  40. Pereira AA, Weiner DE, Scott T, Sarnak MJ. Cognitive function in dialysis patients. Am J Kidney Dis. 2005;45(3):448–62.

    PubMed  Google Scholar 

  41. Sarnak MJ, Tighiouart H, Scott TM, Lou KV, Sorensen EP, Giang LM, et al. Frequency of and risk factors for poor cognitive performance in hemodialysis patients. Neurology. 2013;80(5):471–80.

    PubMed  PubMed Central  Google Scholar 

  42. Kim ED, Meoni LA, Jaar BG, Shafi T, Linda Kao WH, Estrella MM, et al. Association of arterial stiffness and central pressure with cognitive function in incident hemodialysis patients: the PACE study. Kidney Int Rep. 2017;2(6):1149–59.

    PubMed  PubMed Central  Google Scholar 

  43. Drew DA, Bhadelia R, Tighiouart H, Novak V, Scott TM, Lou KV, et al. Anatomic brain disease in hemodialysis patients: a cross-sectional study. Am J Kidney Dis. 2013;61(2):271–8.

    PubMed  Google Scholar 

  44. Kurella Tamura M, Chertow GM, Depner TA, Nissenson AR, Schiller B, Mehta RL, et al. Metabolic profiling of impaired cognitive function in patients receiving Dialysis. Journal of the American Society of Nephrology : JASN. 2016;27(12):3780–7.

    PubMed  Google Scholar 

  45. MacEwen C, Sutherland S, Daly J, Pugh C, Tarassenko L. Relationship between hypotension and cerebral ischemia during hemodialysis. Journal of the American Society of Nephrology : JASN. 2017;28(8):2511–20.

    CAS  PubMed  Google Scholar 

  46. van Zwieten A, Wong G, Ruospo M, Palmer SC, Barulli MR, Iurillo A, et al. Prevalence and patterns of cognitive impairment in adult hemodialysis patients: the COGNITIVE-HD study. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 2018;33(7):1197–206.

    Google Scholar 

  47. Warsame F, Ying H, Haugen CE, Thomas AG, Crews DC, Shafi T, et al. Intradialytic activities and health-related quality of life among hemodialysis patients. Am J Nephrol. 2018;48(3):181–9.

    PubMed  PubMed Central  Google Scholar 

  48. Warsame F, Haugen CE, Ying H, et al. Limited health literacy and adverse outcomes among kidney transplant candidates. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2018.

  49. Thomas AG, Ruck JM, Chu NM, et al. Kidney transplant outcomes in recipients with visual, hearing, physical and walking impairments: a prospective cohort study. Nephrol Dial Transplant. 2019.

  50. Kallenberg MH, Kleinveld HA, Dekker FW, van Munster BC, Rabelink TJ, van Buren M, et al. Functional and cognitive impairment, frailty, and adverse health outcomes in older patients reaching ESRD-A systematic review. Clinical journal of the American Society of Nephrology : CJASN. 2016;11(9):1624–39.

    PubMed  Google Scholar 

  51. Desmond DW. The neuropsychology of vascular cognitive impairment: is there a specific cognitive deficit? J Neurol Sci. 2004;226(1–2):3–7.

    PubMed  Google Scholar 

  52. Hachinski V, Iadecola C, Petersen RC, Breteler MM, Nyenhuis DL, Black SE, et al. National Institute of Neurological Disorders and Stroke-Canadian stroke network vascular cognitive impairment harmonization standards. Stroke. 2006;37(9):2220–41.

    PubMed  Google Scholar 

  53. Albert MS, Moss MB, Tanzi R, Jones K. Preclinical prediction of AD using neuropsychological tests. J Int Neuropsychol Soc. 2001;7(5):631–9.

    CAS  PubMed  Google Scholar 

  54. Kray J, Lindenberger U. Adult age differences in task switching. Psychol Aging. 2000;15(1):126–47.

    CAS  PubMed  Google Scholar 

  55. McAdams-DeMarco MA, Daubresse M, Bae S, Gross AL, Carlson MC, Segev DL. Dementia, Alzheimer's disease, and mortality after hemodialysis initiation. Clin J Am Soc Nephrol. 2018;13(9):1339–47.

    PubMed  PubMed Central  Google Scholar 

  56. Gupta A, Montgomery RN, Bedros V, Lesko J, Mahnken JD, Chakraborty S, et al. Subclinical cognitive impairment and listing for kidney transplantation. Clin J Am Soc Nephrol. 2019;14(4):567–75.

    PubMed  PubMed Central  Google Scholar 

  57. Nohre M, Bauer-Hohmann M, Klewitz F, et al. Prevalence and correlates of cognitive impairment in kidney transplant patients using the DemTect-results of a KTx360 substudy. Front Psychiatry. 2019;10:791.

    PubMed  PubMed Central  Google Scholar 

  58. McAdams-DeMarco MA, Bae S, Chu N, et al. Dementia and Alzheimer's disease among older kidney transplant recipients. JASN: Journal of the American Society of Nephrology; 2016.

    Google Scholar 

  59. Bassuk SS, Wypij D, Berkman LF. Cognitive impairment and mortality in the community-dwelling elderly. Am J Epidemiol. 2000;151(7):676–88.

    CAS  PubMed  Google Scholar 

  60. Lavery LL, Dodge HH, Snitz B, Ganguli M. Cognitive decline and mortality in a community-based cohort: the Monongahela Valley independent elders survey. J Am Geriatr Soc. 2009;57(1):94–100.

    PubMed  Google Scholar 

  61. Angermann S, Schier J, Baumann M, Steubl D, Hauser C, Lorenz G, et al. Cognitive impairment is associated with mortality in hemodialysis patients. Journal of Alzheimer's disease : JAD. 2018;66(4):1529–37.

    PubMed  Google Scholar 

  62. Thomas AG, Ruck JM, Shaffer AA, Haugen C, Ying H, Warsame F, et al. Kidney transplant outcomes in recipients with cognitive impairment: a National Registry and prospective cohort study. Transplantation. 2018;102:S160–1.

    Google Scholar 

  63. Haugen CE, Mountford A, Warsame F, et al. Incidence, risk factors, and Sequelae of post-kidney transplant delirium. J Am Soc Nephrol : JASN. 2018.

  64. Inouye SK, Marcantonio ER, Kosar CM, Tommet D, Schmitt EM, Travison TG, et al. The short-term and long-term relationship between delirium and cognitive trajectory in older surgical patients. Alzheimer’s & dementia : the journal of the Alzheimer’s Association. 2016;12:766–75.

    Google Scholar 

  65. Inouye SK, Westendorp RG, Saczynski JS. Delirium in elderly people. Lancet. 2014;383(9920):911–22.

    PubMed  Google Scholar 

  66. Brodski J, Rossell SL, Castle DJ, Tan EJ. A systematic review of cognitive impairments associated with kidney failure in adults before natural age-related changes. J Int Neuropsychol Soc. 2019;25(1):101–14.

    PubMed  Google Scholar 

  67. Teng E, Chui H. The modified mini-mental state (3MS) examination. J Clin Psychiatry. 1987;48(8):314–8.

    CAS  PubMed  Google Scholar 

  68. McDowell I, Kristjansson B, Hill GB, Hébert R. Community screening for dementia: the mini mental state exam (MMSE) and modified mini-mental state exam (3MS) compared. J Clin Epidemiol. 1997;50(4):377–83.

    CAS  PubMed  Google Scholar 

  69. Kurella M, Luan J, Yaffe K, Chertow GM. Validation of the kidney disease quality of life (KDQOL) cognitive function subscale. Kidney Int. 2004;66(6):2361–7.

    PubMed  Google Scholar 

  70. Lautenschlager NT, Cox KL, Flicker L, Foster JK, van Bockxmeer FM, Xiao J, et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA : the journal of the American Medical Association. 2008;300(9):1027–37.

    CAS  PubMed  Google Scholar 

  71. Chapman SB, Aslan S, Spence JS, et al. Distinct brain and behavioral benefits from cognitive vs. Physical Training: A Randomized Trial in Aging Adults. Frontiers in human neuroscience. 2016;10:338.

    PubMed  PubMed Central  Google Scholar 

  72. Jonasson LS, Nyberg L, Kramer AF, Lundquist A, Riklund K, Boraxbekk CJ. Aerobic exercise intervention, cognitive performance, and brain structure: results from the physical influences on brain in aging (PHIBRA) study. Front Aging Neurosci. 2016;8:336.

    PubMed  Google Scholar 

  73. Anderson-Hanley C, Nimon JP, Westen SC. Cognitive health benefits of strengthening exercise for community-dwelling older adults. J Clin Exp Neuropsychol. 2010;32(9):996–1001.

    PubMed  Google Scholar 

  74. Best JR, Nagamatsu LS, Liu-Ambrose T. Improvements to executive function during exercise training predict maintenance of physical activity over the following year. Front Hum Neurosci. 2014;8:353.

    PubMed  PubMed Central  Google Scholar 

  75. Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci. 2003;14(2):125–30.

    PubMed  Google Scholar 

  76. Etnier JL, Chang YK. The effect of physical activity on executive function: a brief commentary on definitions, measurement issues, and the current state of the literature. J Sport Exerc Psychol. 2009;31(4):469–83.

    PubMed  Google Scholar 

  77. Hillman CH, Belopolsky AV, Snook EM, Kramer AF, McAuley E. Physical activity and executive control: implications for increased cognitive health during older adulthood. Res Q Exerc Sport. 2004;75(2):176–85.

    PubMed  Google Scholar 

  78. Erickson KI, Kramer AF. Aerobic exercise effects on cognitive and neural plasticity in older adults. Br J Sports Med. 2009;43(1):22–4.

    CAS  PubMed  Google Scholar 

  79. Barcelos N, Shah N, Cohen K, Hogan MJ, Mulkerrin E, Arciero PJ, et al. Aerobic and cognitive exercise (ACE) pilot study for older adults: executive function improves with cognitive challenge while Exergaming. J Int Neuropsychol Soc. 2015;21(10):768–79.

    PubMed  Google Scholar 

  80. Guiney H, Lucas SJ, Cotter JD, Machado L. Evidence cerebral blood-flow regulation mediates exercise-cognition links in healthy young adults. Neuropsychology. 2015;29(1):1–9.

    PubMed  Google Scholar 

  81. Stringuetta Belik F, Oliveira ESVR, Braga GP, et al. Influence of Intradialytic aerobic training in cerebral blood flow and cognitive function in patients with chronic kidney disease: a pilot randomized controlled trial. Nephron. 2018;140(1):9–17.

    PubMed  Google Scholar 

  82. Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E, et al. Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci. 2006;61(11):1166–70.

    PubMed  Google Scholar 

  83. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):3017–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Voss MW, Prakash RS, Erickson KI, et al. Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front Aging Neurosci. 2010;2.

  85. Anderson-Hanley C, Arciero PJ, Brickman AM, Nimon JP, Okuma N, Westen SC, et al. Exergaming and older adult cognition: a cluster randomized clinical trial. Am J Prev Med. 2012;42(2):109–19.

    PubMed  Google Scholar 

  86. Nascimento CM, Pereira JR. Pires de Andrade L, et al. physical exercise improves peripheral BDNF levels and cognitive functions in mild cognitive impairment elderly with different bdnf Val66Met genotypes. J Alzheimers Dis. 2015;43(1):81–91.

    CAS  PubMed  Google Scholar 

  87. Hotting K, Roder B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev. 2013;37(9 Pt B):2243–57.

    PubMed  Google Scholar 

  88. Knaepen K, Goekint M, Heyman EM, Meeusen R. Neuroplasticity - exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports Med. 2010;40(9):765–801.

    PubMed  Google Scholar 

  89. Leckie RL, Oberlin LE, Voss MW, et al. BDNF mediates improvements in executive function following a 1-year exercise intervention. Front Hum Neurosci. 2014;8:985.

    PubMed  PubMed Central  Google Scholar 

  90. Loprinzi PD, Herod SM, Cardinal BJ, Noakes TD. Physical activity and the brain: a review of this dynamic, bi-directional relationship. Brain Res. 2013;1539:95–104.

    CAS  PubMed  Google Scholar 

  91. O'Leary KC, Pontifex MB, Scudder MR, Brown ML, Hillman CH. The effects of single bouts of aerobic exercise, exergaming, and videogame play on cognitive control. Clin Neurophysiol. 2011;122(8):1518–25.

    PubMed  Google Scholar 

  92. Roig M, Skriver K, Lundbye-Jensen J, Kiens B, Nielsen JB. A single bout of exercise improves motor memory. PLoS One. 2012;7(9):e44594.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Statton MA, Encarnacion M, Celnik P, Bastian AJ. A single bout of moderate aerobic exercise improves motor skill acquisition. PLoS One. 2015;10(10):e0141393.

    PubMed  PubMed Central  Google Scholar 

  94. Gregory SM, Parker B, Thompson PD. Physical activity, cognitive function, and brain health: what is the role of exercise training in the prevention of dementia? Brain sciences. 2012;2(4):684–708.

    PubMed  PubMed Central  Google Scholar 

  95. Ballesteros S, Prieto A, Mayas J, et al. Brain training with non-action video games enhances aspects of cognition in older adults: a randomized controlled trial. Front Aging Neurosci. 2014;6:277–277.

    Google Scholar 

  96. Anand R, Chapman SB, Rackley A, Keebler M, Zientz J, Hart J Jr. Gist reasoning training in cognitively normal seniors. International journal of geriatric psychiatry. 2011;26(9):961–8.

    PubMed  Google Scholar 

  97. Karbach J, Kray J. How useful is executive control training? Age differences in near and far transfer of task-switching training. Dev Sci. 2009;12(6):978–90.

    PubMed  Google Scholar 

  98. Rebok GW, Ball K, Guey LT, Jones RN, Kim HY, King JW, et al. Ten-year effects of the advanced cognitive training for independent and vital elderly cognitive training trial on cognition and everyday functioning in older adults. J Am Geriatr Soc. 2014;62(1):16–24.

    PubMed  PubMed Central  Google Scholar 

  99. Shatil E. Does combined cognitive training and physical activity training enhance cognitive abilities more than either alone? A four-condition randomized controlled trial among healthy older adults. Front Aging Neurosci. 2013;5:8.

    PubMed  PubMed Central  Google Scholar 

  100. Strenziok M, Parasuraman R, Clarke E, Cisler DS, Thompson JC, Greenwood PM. Neurocognitive enhancement in older adults: comparison of three cognitive training tasks to test a hypothesis of training transfer in brain connectivity. Neuroimage. 2014;85(Pt 3):1027–39.

    PubMed  Google Scholar 

  101. Tagliabue CF, Guzzetti S, Gualco G, Boccolieri G, Boccolieri A, Smith S, et al. A group study on the effects of a short multi-domain cognitive training in healthy elderly Italian people. BMC Geriatr. 2018;18(1):321.

    PubMed  PubMed Central  Google Scholar 

  102. Wolinsky FD, Unverzagt FW, Smith DM, Jones R, Stoddard A, Tennstedt SL. The ACTIVE cognitive training trial and health-related quality of life: protection that lasts for 5 years. J Gerontol A Biol Sci Med Sci. 2006;61(12):1324–9.

    PubMed  Google Scholar 

  103. Fabre C, Chamari K, Mucci P, Masse-Biron J, Prefaut C. Improvement of cognitive function by mental and/or individualized aerobic training in healthy elderly subjects. Int J Sports Med. 2002;23(6):415–21.

    CAS  PubMed  Google Scholar 

  104. Maclin EL, Mathewson KE, Low KA, Boot WR, Kramer AF, Fabiani M, et al. Learning to multitask: effects of video game practice on electrophysiological indices of attention and resource allocation. Psychophysiology. 2011;48(9):1173–83.

    PubMed  Google Scholar 

  105. Mathewson KE, Basak C, Maclin EL, Low KA, Boot WR, Kramer AF, et al. Different slopes for different folks: alpha and delta EEG power predict subsequent video game learning rate and improvements in cognitive control tasks. Psychophysiology. 2012;49(12):1558–70.

    PubMed  Google Scholar 

  106. Chapman SB, Mudar RA. Enhancement of cognitive and neural functions through complex reasoning training: evidence from normal and clinical populations. Front Syst Neurosci. 2014;8:69.

    PubMed  PubMed Central  Google Scholar 

  107. McDaniel MA, Binder EF, Bugg JM, et al. Effects of cognitive training with and without aerobic exercise on cognitively demanding everyday activities. Psychol Aging. 2014;29(3):717–30.

    PubMed  PubMed Central  Google Scholar 

  108. Maillot P, Perrot A, Hartley A. Effects of interactive physical-activity video-game training on physical and cognitive function in older adults. Psychol Aging. 2012;27(3):589–600.

    PubMed  Google Scholar 

  109. Bennett EL, Diamond MC, Krech D, Rosenzweig MR. Chemical and anatomical plasticity brain. Science. 1964;146(3644):610–9.

    CAS  PubMed  Google Scholar 

  110. Spatz HC. Hebb's concept of synaptic plasticity and neuronal cell assemblies. Behav Brain Res. 1996;78(1):3–7.

    CAS  PubMed  Google Scholar 

  111. Cheema BS, Singh MA. Exercise training in patients receiving maintenance hemodialysis: a systematic review of clinical trials. Am J Nephrol. 2005;25(4):352–64.

    PubMed  Google Scholar 

  112. Liao MT, Liu WC, Lin FH, Huang CF, Chen SY, Liu CC, et al. Intradialytic aerobic cycling exercise alleviates inflammation and improves endothelial progenitor cell count and bone density in hemodialysis patients. Medicine (Baltimore). 2016;95(27):e4134.

    CAS  Google Scholar 

  113. Bennett PN, Fraser S, Barnard R, et al. Effects of an intradialytic resistance training programme on physical function: a prospective stepped-wedge randomized controlled trial. Nephrol Dial Transplant. 2015.

  114. Giannaki CD, Hadjigeorgiou GM, Karatzaferi C, Maridaki MD, Koutedakis Y, Founta P, et al. A single-blind randomized controlled trial to evaluate the effect of 6 months of progressive aerobic exercise training in patients with uraemic restless legs syndrome. Nephrol Dial Transplant. 2013;28(11):2834–40.

    PubMed  Google Scholar 

  115. Parsons TL, Toffelmire EB, King-VanVlack CE. The effect of an exercise program during hemodialysis on dialysis efficacy, blood pressure and quality of life in end-stage renal disease (ESRD) patients. Clin Nephrol. 2004;61(4):261–74.

    CAS  PubMed  Google Scholar 

  116. Marinho SM, C M, Jesm B, et al. Exercise training alters the bone mineral density of hemodialysis patients. J Strength Cond Res. 2016.

  117. Kolewaski CD, Mullally MC, Parsons TL, Paterson ML, Toffelmire EB, King-VanVlack CE. Quality of life and exercise rehabilitation in end stage renal disease. CANNT J. 2005;15(4):22–9.

    PubMed  Google Scholar 

  118. Painter PL, Nelson-Worel JN, Hill MM, Thornbery DR, Shelp WR, Harrington AR, et al. Effects of exercise training during hemodialysis. Nephron. 1986;43(2):87–92.

    CAS  PubMed  Google Scholar 

  119. Painter P, Moore G, Carlson L, Paul S, Myll J, Phillips W, et al. Effects of exercise training plus normalization of hematocrit on exercise capacity and health-related quality of life. Am J Kidney Dis. 2002;39(2):257–65.

    PubMed  Google Scholar 

  120. Moug SJ, Grant S, Creed G, Boulton JM. Exercise during haemodialysis: west of Scotland pilot study. Scott Med J. 2004;49(1):14–7.

    CAS  PubMed  Google Scholar 

  121. DePaul V, Moreland J, Eager T, Clase CM. The effectiveness of aerobic and muscle strength training in patients receiving hemodialysis and EPO: a randomized controlled trial. Am J Kidney Dis. 2002;40(6):1219–29.

    CAS  PubMed  Google Scholar 

  122. Kouidi EJ, Grekas DM, Deligiannis AP. Effects of exercise training on noninvasive cardiac measures in patients undergoing long-term hemodialysis: a randomized controlled trial. Am J Kidney Dis. 2009;54(3):511–21.

    PubMed  Google Scholar 

  123. Johansen KL. Exercise in the end-stage renal disease population. J Am Soc Nephrol. 2007;18(6):1845–54.

    CAS  PubMed  Google Scholar 

  124. Sheng K, Zhang P, Chen L, Cheng J, Wu C, Chen J. Intradialytic exercise in hemodialysis patients: a systematic review and meta-analysis. Am J Nephrol. 2014;40(5):478–90.

    PubMed  Google Scholar 

  125. Manfredini F, Mallamaci F, D'Arrigo G, et al. Exercise in patients on Dialysis: a multicenter, randomized clinical trial. Journal of the American Society of Nephrology : JASN. 2017;28(4):1259–68.

    PubMed  Google Scholar 

  126. Baggetta R, D'Arrigo G, Torino C, et al. Effect of a home based, low intensity, physical exercise program in older adults dialysis patients: a secondary analysis of the EXCITE trial. BMC Geriatr. 2018;18(1):248–248.

    Google Scholar 

  127. McAdams-DeMarco MA, Konel J, Warsame F, et al. Intradialytic cognitive and exercise training may preserve cognitive function. Kidney international reports. 2018;3(1):81–8.

    PubMed  Google Scholar 

  128. Kurella Tamura M, Unruh ML, Nissenson AR, Larive B, Eggers PW, Gassman J, et al. Effect of more frequent hemodialysis on cognitive function in the frequent hemodialysis network trials. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2013;61(2):228–37.

    Google Scholar 

  129. Scott TM, Rogers G, Weiner DE, et al. B-vitamin therapy for kidney transplant recipients lowers Homocysteine and improves selective cognitive outcomes in the randomized FAVORIT ancillary cognitive trial. J Prev Alzheimers Dis. 2017;4(3):174–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Hall RK, Haines C, Gorbatkin SM, Schlanger L, Shaban H, Schell JO, et al. Incorporating geriatric assessment into a nephrology clinic: preliminary data from two models of care. J Am Geriatr Soc. 2016;64(10):2154–8.

    PubMed  PubMed Central  Google Scholar 

  131. Hall RK, McAdams-DeMarco MA. Breaking the cycle of functional decline in older dialysis patients. Semin Dial. 2018;31(5):462–7.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

Dr. McAdams-DeMarco was funded by the NIH: R01AG055781, R01DK120518, and R01DK114074. Dorry Segev was funded by the NIH: K24DK101828.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mara A. McAdams-DeMarco.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Frailty and Gerontology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, N.M., Segev, D. & McAdams-DeMarco, M.A. Interventions to Preserve Cognitive Functioning among Older Kidney Transplant Recipients. Curr Transpl Rep 7, 346–354 (2020). https://doi.org/10.1007/s40472-020-00296-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-020-00296-w

Keywords

Navigation