Skip to main content

Advertisement

Log in

Cell Replacement Therapy for Insulin-Dependent Diabetes: Maintaining Islet Architecture and Distribution After Graft

  • Cellular Transplants (G Orlando, Section Editor)
  • Published:
Current Transplantation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To survey current practices in clinical islet transplantation to identify the critical factors for designing a successful implant strategy for islets derived from pluripotent stem cells. Of particular importance is the volume of a therapeutic dose and the host sites capable of housing that volume.

Recent Findings

A calculated dose of surviving islets required for normoglycemia in patients is large, though less than the number of islets present in a healthy pancreas. Great strides have been made developing methods for delivery of a large dose of islets that maintain cell viability and potency. Although many of these endeavor to provide the islets close association to the host vasculature, only some of the strategies maintain the architecture and distribution of the individual islets.

Summary

The trends in clinical research and in laboratory models suggest that strategies that maintain the architecture and distribution of the individual islets are the most successful. This requirement increases the volume required to deliver a therapeutic dose and limits the anatomical sites available for clinical transplant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rahier J, Wallon J, Henquin JC. Cell populations in the endocrine pancreas of human neonates and infants. Diabetologia. 1981;20:540–6.

    CAS  PubMed  Google Scholar 

  2. Da Silva Xavier G. The cells of the islets of Langerhans. J Clin Med Res. 2018;7. https://doi.org/10.3390/jcm7030054.

  3. Seiron P, Wiberg A, Kuric E, Krogvold L, Jahnsen FL, Dahl-Jørgensen K, et al. Characterisation of the endocrine pancreas in type 1 diabetes: islet size is maintained but islet number is markedly reduced. Hip Int. 2019;5:248–55.

    CAS  Google Scholar 

  4. McCall M, Shapiro AMJ. Update on islet transplantation. Cold Spring Harb Perspect Med. 2012;2:a007823.

    PubMed  PubMed Central  Google Scholar 

  5. Sakuma Y, Ricordi C, Miki A, Yamamoto T, Pileggi A, Khan A, et al. Factors that affect human islet isolation. Transplant Proc. 2008;40:343–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bottino R, Balamurugan AN, Tse H, Thirunavukkarasu C, Ge X, Profozich J, et al. Response of human islets to isolation stress and the effect of antioxidant treatment. Diabetes. 2004;53:2559–68.

    CAS  PubMed  Google Scholar 

  7. Giuliani M, Moritz W, Bodmer E, Dindo D, Kugelmeier P, Lehmann R, et al. Central necrosis in isolated hypoxic human pancreatic islets: evidence for postisolation ischemia. Cell Transplant. 2005;14:67–76.

    PubMed  Google Scholar 

  8. Huang H-H, Harrington S, Stehno-Bittel L. The flaws and future of islet volume measurements. Cell Transplant. 2018;27:1017–26.

    PubMed  PubMed Central  Google Scholar 

  9. Eich T, Eriksson O, Lundgren T. Nordic network for clinical islet Transplantation. Visualization of early engraftment in clinical islet transplantation by positron-emission tomography. N Engl J Med. 2007;356:2754–5.

    CAS  PubMed  Google Scholar 

  10. Bennet W, Groth CG, Larsson R, Nilsson B, Korsgren O. Isolated human islets trigger an instant blood mediated inflammatory reaction: implications for intraportal islet transplantation as a treatment for patients with type 1 diabetes. Ups J Med Sci. 2000;105:125–33.

    CAS  PubMed  Google Scholar 

  11. Li X, Meng Q, Zhang L. The fate of allogeneic pancreatic islets following intraportal transplantation: challenges and solutions. J Immunol Res. 2018;2018:2424586.

    PubMed  PubMed Central  Google Scholar 

  12. Soria B, Roche E, Berná G, León-Quinto T, Reig JA, Martín F. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes. 2000;49:157–62.

    CAS  PubMed  Google Scholar 

  13. Sharon N, Vanderhooft J, Straubhaar J, Mueller J, Chawla R, Zhou Q, et al. Wnt signaling separates the progenitor and endocrine compartments during pancreas development. Cell Rep. 2019;27:2281–2291.e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Veres A, Faust AL, Bushnell HL, Engquist EN, Kenty JH-R, Harb G, et al. Charting cellular identity during human in vitro β-cell differentiation. Nature. 2019;569:368–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Velazco-Cruz L, Song J, Maxwell KG, Goedegebuure MM, Augsornworawat P, Hogrebe NJ, et al. Acquisition of dynamic Function in human stem cell-derived β cells. Stem Cell Rep. 2019;12:351–65.

    CAS  Google Scholar 

  16. Pagliuca FW, Millman JR, Gürtler M, Segel M, Van Dervort A, Ryu JH, et al. Generation of functional human pancreatic β cells in vitro. Cell. 2014;159:428–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. • Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. 2014;32:1121–33. Recent work describing effective generation of insulin-secreting cells from stem cells.

    CAS  PubMed  Google Scholar 

  18. Qadir MMF, Álvarez-Cubela S, Belle K, Sapir T, Messaggio F, Johnson KB, et al. A double fail-safe approach to prevent tumorigenesis and select pancreatic β cells from human embryonic stem cells. Stem Cell Rep. 2019;12:611–23.

    CAS  Google Scholar 

  19. Stock AA, Manzoli V, De Toni T, Abreu MM, Poh Y-C, Ye L, et al. Conformal coating of stem cell-derived islets for β cell replacement in type 1 diabetes. Stem Cell Rep. 2020;14:91–104.

    CAS  Google Scholar 

  20. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343:230–8.

    CAS  PubMed  Google Scholar 

  21. • Shapiro AMJ, Pokrywczynska M, Ricordi C. Clinical pancreatic islet transplantation. Nat Rev Endocrinol. 2017;13:268–77. Very recent review summarizing clinical trials using islet transplantation with highlighted perspectives for the future regarding immunosuppression.

    CAS  PubMed  Google Scholar 

  22. Baidal D, Ricordi C, Berman DM, Pileggi A, Alvarez Gil AM, Padilla N, et al. Long-term function of islet allografts transplanted on the omentum using a biological scaffold. Diabetes. 2018;67. https://doi.org/10.2337/db18-140-OR.

  23. Delaune V, Berney T, Lacotte S, Toso C. Intraportal islet transplantation: the impact of the liver microenvironment. Transpl Int. 2017;30:227–38.

    PubMed  Google Scholar 

  24. Transplantation, Bioengineering, and regeneration of the endocrine pancreas | ScienceDirect. [cited 18 Dec 2019]. Available: https://doi.org/10.1016/C2017-0-01669-5

  25. Berman DM, O’Neil JJ, Coffey LCK, Chaffanjon PCJ, Kenyon NM, Ruiz P Jr, et al. Long-term survival of nonhuman primate islets implanted in an omental pouch on a biodegradable scaffold. Am J Transplant. 2009;9:91–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Di Nicola V. Omentum a powerful biological source in regenerative surgery. Regen Ther. 2019;11:182–91.

    PubMed  PubMed Central  Google Scholar 

  27. Litbarg NO, Gudehithlu KP, Sethupathi P, Arruda JAL, Dunea G, Singh AK. Activated omentum becomes rich in factors that promote healing and tissue regeneration. Cell Tissue Res. 2007;328:487–97.

    CAS  PubMed  Google Scholar 

  28. Shen Y-M, Shen Z-Y. Greater omentum in reconstruction of refractory wounds. Chin J Traumatol. 2003;6:81–5.

    PubMed  Google Scholar 

  29. Stice MJ, Dunn TB, Bellin MD, Skube ME, Beilman GJ. Omental pouch technique for combined site islet autotransplantation following total pancreatectomy. Cell Transplant. 2018;27:1561–8.

    PubMed  PubMed Central  Google Scholar 

  30. Hefty TR, Kuhr CS, Chong KT, Guinee DG, Wang W, Reems JA, et al. Omental roll-up: a technique for islet engraftment in a large animal model. J Surg Res. 2010;161:134–8.

    PubMed  Google Scholar 

  31. Pepper AR, Pawlick R, Gala-Lopez B, MacGillivary A, Mazzuca DM, White DJG, et al. Diabetes is reversed in a murine model by marginal mass syngeneic islet transplantation using a subcutaneous cell pouch device. Transplantation. 2015;99:2294–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kawakami Y, Iwata H, Gu Y, Miyamoto M, Murakami Y, Yamasaki T, et al. Modified subcutaneous tissue with neovascularization is useful as the site for pancreatic islet transplantation. Cell Transplant. 2000;9:729–32.

    CAS  PubMed  Google Scholar 

  33. Carlsson P-O, Espes D, Sedigh A, Rotem A, Zimerman B, Grinberg H, et al. Transplantation of macroencapsulated human islets within the bioartificial pancreas βAir to patients with type 1 diabetes mellitus. Am J Transplant. 2018;18:1735–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Neufeld T, Ludwig B, Barkai U, Weir GC, Colton CK, Evron Y, et al. The efficacy of an immunoisolating membrane system for islet xenotransplantation in minipigs. PLoS One. 2013;8:e70150.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ludwig B, Reichel A, Steffen A, Zimerman B, Schally AV, Block NL, et al. Transplantation of human islets without immunosuppression. Proc Natl Acad Sci U S A. 2013;110:19054–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Maffi P, Nano R, Monti P, Melzi R, Sordi V, Mercalli A, et al. Islet allotransplantation in the bone marrow of patients with type 1 diabetes: a pilot randomized trial. Transplantation. 2019;103:839–51.

    CAS  PubMed  Google Scholar 

  37. Bertuzzi F, Colussi G, Lauterio A, De Carlis L. Intramuscular islet allotransplantation in type 1 diabetes mellitus. Eur Rev Med Pharmacol Sci. 2018;22:1731–6.

    CAS  PubMed  Google Scholar 

  38. Pepper AR, Pawlick R, Bruni A, Wink J, Rafiei Y, O’Gorman D, et al. Transplantation of human pancreatic endoderm cells reverses diabetes post transplantation in a prevascularized subcutaneous site. Stem Cell Rep. 2017;8:1689–700.

    CAS  Google Scholar 

  39. Song W, Chiu A, Wang L-H, Schwartz RE, Li B, Bouklas N, et al. Engineering transferrable microvascular meshes for subcutaneous islet transplantation. Nat Commun. 2019;10:4602.

    PubMed  PubMed Central  Google Scholar 

  40. Villa C, Manzoli V, Abreu MM, Verheyen CA, Seskin M, Najjar M, et al. Effects of composition of alginate-polyethylene glycol microcapsules and transplant site on encapsulated islet graft outcomes in mice. Transplantation. 2017;101:1025–35.

    CAS  PubMed  Google Scholar 

  41. Rodriguez-Diaz R, Abdulreda MH, Formoso AL, Gans I, Ricordi C, Berggren P-O, et al. Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab. 2011;14:45–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Reinert RB, Cai Q, Hong J-Y, Plank JL, Aamodt K, Prasad N, et al. Vascular endothelial growth factor coordinates islet innervation via vascular scaffolding. Development. 2014;141:1480–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Brissova M, Shostak A, Shiota M, Wiebe PO, Poffenberger G, Kantz J, et al. Pancreatic islet production of vascular endothelial growth factor--a is essential for islet vascularization, revascularization, and function. Diabetes. 2006;55:2974–85.

    CAS  PubMed  Google Scholar 

  44. Jansson L, Barbu A, Bodin B, Drott CJ, Espes D, Gao X, et al. Pancreatic islet blood flow and its measurement. Ups J Med Sci. 2016;121:81–95.

    PubMed  PubMed Central  Google Scholar 

  45. Henderson JR, Moss MC. A morphometric study of the endocrine and exocrine capillaries of the pancreas. Q J Exp Physiol. 1985;70:347–56.

    CAS  PubMed  Google Scholar 

  46. Islets of Langerhans, 2nd edn. SpringerLink. [cited 18 Dec 2019]. Available: https://doi.org/10.1007/978-94-007-6884-0

  47. Rackham CL, Jones PM, King AJF. Maintenance of islet morphology is beneficial for transplantation outcome in diabetic mice. PLoS One. 2013;8:e57844.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Coronel MM, Stabler CL. Engineering a local microenvironment for pancreatic islet replacement. Curr Opin Biotechnol. 2013;24:900–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pedraza E, Brady A-C, Fraker CA, Molano RD, Sukert S, Berman DM, et al. Macroporous three-dimensional PDMS scaffolds for extrahepatic islet transplantation. Cell Transplant. 2013;22:1123–35.

    PubMed  Google Scholar 

  50. Gibly RF, Zhang X, Graham ML, Hering BJ, Kaufman DB, Lowe WL Jr, et al. Extrahepatic islet transplantation with microporous polymer scaffolds in syngeneic mouse and allogeneic porcine models. Biomaterials. 2011;32:9677–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Berman DM, Molano RD, Fotino C, Ulissi U, Gimeno J, Mendez AJ, et al. Bioengineering the endocrine pancreas: intraomental islet transplantation within a biologic resorbable scaffold. Diabetes. 2016;65:1350–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Southard SM, Kotipatruni RP, Rust WL. Generation and selection of pluripotent stem cells for robust differentiation to insulin-secreting cells capable of reversing diabetes in rodents. PLoS One. 2018;13:e0203126.

    PubMed  PubMed Central  Google Scholar 

  53. Soltanian A, Ghezelayagh Z, Mazidi Z, Halvaei M, Mardpour S, Ashtiani MK, et al. Generation of functional human pancreatic organoids by transplants of embryonic stem cell derivatives in a 3D-printed tissue trapper. J Cell Physiol. 2019;234:9564–76.

    CAS  PubMed  Google Scholar 

  54. •• Augsornworawat P, Velazco-Cruz L, Song J, Millman JR. A hydrogel platform for in vitro three dimensional assembly of human stem cell-derived islet cells and endothelial cells. Acta Biomater. 2019;97:272–80. Recent work characterizing a method for co-culture of islets and endothelial cells derived from a renewable source for more efficient vascularization and engraftment in host tissue.

    CAS  PubMed  Google Scholar 

  55. Espona-Noguera A, Ciriza J, Cañibano-Hernández A, Orive G, Hernández RMM, Saenz Del Burgo L, et al. Review of advanced hydrogel-based cell encapsulation systems for insulin delivery in type 1 diabetes mellitus. Pharmaceutics. 2019;11. https://doi.org/10.3390/pharmaceutics11110597.

  56. Desai T, Shea LD. Advances in islet encapsulation technologies. Nat Rev Drug Discov. 2017;16:338–50.

    CAS  PubMed  Google Scholar 

  57. Krishnamurthy NV, Gimi B. Encapsulated cell grafts to treat cellular deficiencies and dysfunction. Crit Rev Biomed Eng. 2011;39:473–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ashimova A, Yegorov S, Negmetzhanov B, Hortelano G. Cell encapsulation within alginate microcapsules: immunological challenges and outlook. Front Bioeng Biotechnol 2019;7. https://doi.org/10.3389/fbioe.2019.00380.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Rust.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cellular Transplants

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacob, A., Southard, S. & Rust, W. Cell Replacement Therapy for Insulin-Dependent Diabetes: Maintaining Islet Architecture and Distribution After Graft. Curr Transpl Rep 7, 99–104 (2020). https://doi.org/10.1007/s40472-020-00281-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-020-00281-3

Keywords

Navigation