Skip to main content

Advertisement

Log in

The Changing Epidemiology of Primary Liver Cancer

  • Cancer Epidemiology (MB Terry, Section Editor)
  • Published:
Current Epidemiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In prior decades, liver cancer was viewed as a neoplasm that almost exclusively arose among high-risk populations in low- and middle-income countries. Incidence rates in some high-risk populations, however, have been declining, while rates in low-risk populations have been increasing, reflecting changes in underlying etiology. In this review, we highlight the evolving epidemiology of liver cancer, focusing on recent research and advances.

Recent Findings

Efforts to reduce or eliminate the risk associated with major risk factors such as hepatitis B virus (HBV), hepatitis C virus (HCV), and aflatoxin B1 (AFB1) have met with some success. As opposed to these favorable trends, the joint epidemics of obesity and diabetes have begun to affect liver cancer rates around the world.

Summary

While there has been progress in combating the effects of some risk factors, the increasing prevalence of others poses a major threat to attempts to tackle the rising incidence of liver cancer globally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Global Cancer Observatory [Internet]. Lyon, France: International Agency for Research on Cancer; 2018. Accessed: November 22, 2018. Available from: http://gco.iarc.fr/today/.

  2. Petrick JL, Braunlin M, Laversanne M, Valery PC, Bray F, McGlynn KA. International trends in liver cancer incidence, overall and by histologic subtype, 1978-2007. Int J Cancer. 2016;139(7):1534–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Valery PC, Laversanne M, Clark PJ, Petrick JL, McGlynn KA, Bray F. Projections of primary liver cancer to 2030 in 30 countries worldwide. Hepatology. 2017; Aug 31 (E-pub).

  4. Ambade A, Mandrekar P. Oxidative stress and inflammation: essential partners in alcoholic liver disease. Int J Hepatol. 2012;2012:853175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bray F, Colombet M, Mery L, Piñeros M, Znaor A, Zanetti R, Ferlay J, editors. Cancer incidence in five continents, volumes I to XI: IARC CANCERBase No. 11 [Internet]. Available at: http://ci5.iarc.fr. Accessed November 20, 2018.

  6. Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) SEER*Stat Database: Incidence - SEER 18 Regs Research Data + Hurricane Katrina Impacted Louisiana Cases, Nov 2017 Sub (1973–2015) Total U.S., National Cancer Institute, DCCPS, Surveillance Research Program, Surveillance Systems Branch, based on the November 2017 submission.

  7. Dorak MT, Karpuzoglu E. Gender differences in cancer susceptibility: an inadequately addressed issue. Front Genet. 2012;3:268.

    Article  PubMed  PubMed Central  Google Scholar 

  8. •• Petrick JL, Kelly SP, Altekruse SF, McGlynn KA, Rosenberg PS. Future of hepatocellular carcinoma incidence in the United States forecast through 2030. J Clin Oncol. 2016;34(15):1787–94 Study based on the SEER 18 Registry Database, 2000-12. Future rates of liver cancer were forecast through 30, utilizing an age-period-cohort model, and showed that rates of liver cancer are predicted to increase through 30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health. 2016;4(9):e609–16.

    Article  PubMed  Google Scholar 

  10. Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol. 2006;45(4):529–38.

    Article  PubMed  Google Scholar 

  11. WHO. WHO Fact Sheet on Hepatitis B. 2018. https://www.who.int/news-room/fact-sheets/detail/hepatitis-b. Accessed October 22, 2018.

  12. Schweitzer A, Horn J, Mikolajczyk RT, Krause G, Ott JJ. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. Lancet. 2015;386(10003):1546–55.

    Article  PubMed  Google Scholar 

  13. Immunization Coverage [database on the Internet]2018. Available from: https://www.who.int/news-room/fact-sheets/detail/immunization-coverage. Accessed: October 4, 2018.

  14. Nelson NP, Easterbrook PJ, McMahon BJ. Epidemiology of hepatitis B virus infection and impact of vaccination on disease. Clin Liver Dis. 2016;20(4):607–28.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Graber-Stiehl I. The silent epidemic killing more people than HIV, malaria or TB. Nature. 2018;564(7734):24–6.

    Article  CAS  PubMed  Google Scholar 

  16. Peng CY, Chien RN, Liaw YF. Hepatitis B virus-related decompensated liver cirrhosis: benefits of antiviral therapy. J Hepatol. 2012;57(2):442–50.

    Article  CAS  PubMed  Google Scholar 

  17. Stroffolini T, Mele A, Tosti ME, Gallo G, Balocchini E, Ragni P, et al. The impact of the hepatitis B mass immunisation campaign on the incidence and risk factors of acute hepatitis B in Italy. J Hepatol. 2000;33(6):980–5.

    Article  CAS  PubMed  Google Scholar 

  18. Chang MH, You SL, Chen CJ, Liu CJ, Lai MW, Wu TC, et al. Long-term effects of hepatitis B immunization of infants in preventing liver cancer. Gastroenterology. 2016;151(3):472–80. e1.

    Article  CAS  PubMed  Google Scholar 

  19. McMahon BJ, Bulkow LR, Singleton RJ, Williams J, Snowball M, Homan C, et al. Elimination of hepatocellular carcinoma and acute hepatitis B in children 25 years after a hepatitis B newborn and catch-up immunization program. Hepatology. 2011;54(3):801–7.

    Article  PubMed  Google Scholar 

  20. Kuang XJ, Jia RR, Huo RR, Yu JJ, Wang JJ, Xiang BD, et al. Systematic review of risk factors of hepatocellular carcinoma after hepatitis B surface antigen seroclearance. J Viral Hepat. 2018;25(9):1026–37.

    Article  CAS  PubMed  Google Scholar 

  21. Papatheodoridis GV, Idilman R, Dalekos GN, Buti M, Chi H, van Boemmel F, et al. The risk of hepatocellular carcinoma decreases after the first 5 years of entecavir or tenofovir in Caucasians with chronic hepatitis B. Hepatology. 2017;66(5):1444–53.

    Article  CAS  PubMed  Google Scholar 

  22. Choi J, Han S, Kim N, Lim YS. Increasing burden of liver cancer despite extensive use of antiviral agents in a hepatitis B virus-endemic population. Hepatology. 2017;66(5):1454–63.

    Article  PubMed  Google Scholar 

  23. Lemoine M, Eholie S, Lacombe K. Reducing the neglected burden of viral hepatitis in Africa: strategies for a global approach. J Hepatol. 2015;62(2):469–76.

    Article  PubMed  Google Scholar 

  24. WHO. WHO Fact Sheet on Hepatitis C 2018. http://www.who.int/news-room/fact-sheets/detail/hepatitis-c. Accessed October 17, 2018.

  25. Polaris Observatory HCVC. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study. Lancet Gastroenterol Hepatol. 2017;2(3):161–76.

    Article  Google Scholar 

  26. Markov PV, van de Laar TJ, Thomas XV, Aronson SJ, Weegink CJ, van den Berk GE, et al. Colonial history and contemporary transmission shape the genetic diversity of hepatitis C virus genotype 2 in Amsterdam. J Virol. 2012;86(14):7677–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tanaka Y, Hanada K, Mizokami M, Yeo AE, Shih JW, Gojobori T, et al. A comparison of the molecular clock of hepatitis C virus in the United States and Japan predicts that hepatocellular carcinoma incidence in the United States will increase over the next two decades. Proc Natl Acad Sci U S A. 2002;99(24):15584–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Frank C, Mohamed MK, Strickland GT, Lavanchy D, Arthur RR, Magder LS, et al. The role of parenteral antischistosomal therapy in the spread of hepatitis C virus in Egypt. Lancet. 2000;355(9207):887–91.

    Article  CAS  PubMed  Google Scholar 

  29. •• Joy JB, McCloskey RM, Nguyen T, Liang RH, Khudyakov Y, Olmstead A, et al. The spread of hepatitis C virus genotype 1a in North America: a retrospective phylogenetic study. Lancet Infect Dis. 2016;16(6):698–702 This is the first study to report that increased prevalence in the birth cohorts of 1945-65 in the US is likely due to nosocomial or iatrogenic transmission.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yartel AK, Rein DB, Brown KA, Krauskopf K, Massoud OI, Jordan C et al. Hepatitis C virus testing for case identification in persons born during 1945–1965: results from three randomized controlled trials. Hepatology. 2017; Sep 23 (E-pub)

  31. Davis GL, Alter MJ, El-Serag H, Poynard T, Jennings LW. Aging of hepatitis C virus (HCV)-infected persons in the United States: a multiple cohort model of HCV prevalence and disease progression. Gastroenterology. 2010;138(2):513–21, 521.e1–e6.

    Article  PubMed  Google Scholar 

  32. Sulkowski MS, Gardiner DF, Rodriguez-Torres M, Reddy KR, Hassanein T, Jacobson I, et al. Daclatasvir plus sofosbuvir for previously treated or untreated chronic HCV infection. N Engl J Med. 2014;370(3):211–21.

    Article  CAS  PubMed  Google Scholar 

  33. Elgharably A, Gomaa AI, Crossey MM, Norsworthy PJ, Waked I, Taylor-Robinson SD. Hepatitis C in Egypt - past, present, and future. Int J Gen Med. 2017;10:1–6.

    Article  PubMed  Google Scholar 

  34. Elsharkawy A, El-Raziky M, El-Akel W, El-Saeed K, Eletreby R, Hassany M et al. Planning and prioritizing direct-acting antivirals treatment for HCV patients in countries with limited resources: lessons from the Egyptian experience. J Hepatol 2018;68(4):691–8.

  35. Mourad M, Masri L. Millions flock to free tests as Egypt seeks to eradicate hepatitis C. Reuters. 2018 December 3. Available from: https://www.reuters.com/article/us-health-egypt-hepatitis-c/millions-flock-to-free-tests-as-egypt-seeks-to-eradicate-hepatitis-c-idUSKBN1O21IO?il=0. Accessed December 14, 2018.

  36. Li DK, Ren Y, Fierer DS, Rutledge S, Shaikh OS, Lo Re V III, et al. The short-term incidence of hepatocellular carcinoma is not increased after hepatitis C treatment with direct-acting antivirals: an ERCHIVES study. Hepatology. 2018;67(6):2244–53.

    Article  CAS  PubMed  Google Scholar 

  37. Ravi S, Axley P, Jones D, Kodali S, Simpson H, McGuire BM, et al. Unusually high rates of hepatocellular carcinoma after treatment with direct-acting antiviral therapy for hepatitis C related cirrhosis. Gastroenterology. 2017;152(4):911–2.

    Article  PubMed  Google Scholar 

  38. Kanwal F, Kramer J, Asch SM, Chayanupatkul M, Cao Y, El-Serag HB. Risk of hepatocellular cancer in HCV patients treated with direct-acting antiviral agents. Gastroenterology. 2017;153(4):996–1005. e1.

    Article  CAS  PubMed  Google Scholar 

  39. Nahon P, Layese R, Bourcier V, Cagnot C, Marcellin P, Guyader D, et al. Incidence of hepatocellular carcinoma after direct antiviral therapy for HCV in patients with cirrhosis included in surveillance programs. Gastroenterology. 2018;155(5):1436–50. e6.

    Article  Google Scholar 

  40. Nahon P, Bourcier V, Layese R, Audureau E, Cagnot C, Marcellin P, et al. Eradication of hepatitis C virus infection in patients with cirrhosis reduces risk of liver and non-liver complications. Gastroenterology. 2017;152(1):142–56. e2.

    Article  PubMed  Google Scholar 

  41. IARC. Overall evaluations of carcinogenicity: an updating of IARC Monographs volumes 1 to 42. IARC Monogr Eval Carcinog Risks Hum 1987;Suppl. 7.

  42. Liu Y, Chang CC, Marsh GM, Wu F. Population attributable risk of aflatoxin-related liver cancer: systematic review and meta-analysis. Eur J Cancer. 2012;48(14):2125–36.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kumar P, Mahato DK, Kamle M, Mohanta TK, Kang SG. Aflatoxins: a global concern for food safety. Human Health Manag Front Microbiol. 2016;7:2170.

    Google Scholar 

  44. Chen JG, Egner PA, Ng D, Jacobson LP, Munoz A, Zhu YR, et al. Reduced aflatoxin exposure presages decline in liver cancer mortality in an endemic region of China. Cancer Prev Res (Phila). 2013;6(10):1038–45.

    Article  CAS  Google Scholar 

  45. Sun Z, Chen T, Thorgeirsson SS, Zhan Q, Chen J, Park JH, et al. Dramatic reduction of liver cancer incidence in young adults: 28 year follow-up of etiological interventions in an endemic area of China. Carcinogenesis. 2013;34(8):1800–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smith JW, Kroker-Lobos MF, Lazo M, Rivera-Andrade A, Egner PA, Wedemeyer H, et al. Aflatoxin and viral hepatitis exposures in Guatemala: molecular biomarkers reveal a unique profile of risk factors in a region of high liver cancer incidence. PLoS One. 2017;12(12):e0189255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bagnardi V, Rota M, Botteri E, Tramacere I, Islami F, Fedirko V, et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis. Br J Cancer. 2015;112(3):580–93.

    Article  CAS  PubMed  Google Scholar 

  48. Turati F, Galeone C, Rota M, Pelucchi C, Negri E, Bagnardi V, et al. Alcohol and liver cancer: a systematic review and meta-analysis of prospective studies. Ann Oncol. 2014;25(8):1526–35.

    Article  CAS  PubMed  Google Scholar 

  49. • Petrick JL, Campbell PT, Koshiol J, Thistle JE, Andreotti G, Beane-Freeman LE, et al. Tobacco, alcohol use and risk of hepatocellular carcinoma and intrahepatic cholangiocarcinoma: the Liver Cancer Pooling Project. Br J Cancer. 2018;118(7):1005–12 Pooled analysis of 14 US-based cohorts. This study reported smoking cessation and light-to-moderate drinking may reduce the risk of HCC.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Schrieks IC, Heil AL, Hendriks HF, Mukamal KJ, Beulens JW. The effect of alcohol consumption on insulin sensitivity and glycemic status: a systematic review and meta-analysis of intervention studies. Diabetes Care. 2015;38(4):723–32.

    CAS  PubMed  Google Scholar 

  51. WHO. Global status report on alcohol and health 2018. Geneva: World Health Organization; 2018.

    Google Scholar 

  52. United States Surgeon General. The health consequences of smoking--50 years of progress : a report of the surgeon general. Rockville: U.S. Department of Health and Human Services; 2014.

    Google Scholar 

  53. WHO. WHO global report on trends in prevalence of tobacco smoking 2000–2025. second ed. Geneva: World Health Organization; 2018.

    Google Scholar 

  54. Alzahrani B, Iseli TJ, Hebbard LW. Non-viral causes of liver cancer: does obesity led inflammation play a role? Cancer Lett. 2014;345(2):223–9.

    Article  CAS  PubMed  Google Scholar 

  55. Chen Y, Wang X, Wang J, Yan Z, Luo J. Excess body weight and the risk of primary liver cancer: an updated meta-analysis of prospective studies. Eur J Cancer. 2012;48(14):2137–45.

    Article  PubMed  Google Scholar 

  56. Campbell PT, Newton CC, Freedman ND, Koshiol J, Alavanja MC, Beane Freeman LE, et al. Body mass index, waist circumference, diabetes, and risk of liver cancer for U.S. adults. Cancer Res. 2016;76(20):6076–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. •• Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K, et al. Body fatness and cancer--viewpoint of the IARC Working Group. N Engl J Med. 2016;375(8):794–8 Comprehensive report, examining the association between obesity and cancer. This review reports that obesity increases the risk of 13 types of cancer, with strong associations shown for obesity-liver cancer.

    Article  PubMed  Google Scholar 

  58. Berentzen TL, Gamborg M, Holst C, Sorensen TI, Baker JL. Body mass index in childhood and adult risk of primary liver cancer. J Hepatol. 2014;60(2):325–30.

    Article  PubMed  Google Scholar 

  59. Hagstrom H, Tynelius P, Rasmussen F. High BMI in late adolescence predicts future severe liver disease and hepatocellular carcinoma: a national, population-based cohort study in 1.2 million men. Gut. 2018;67(8):1536–42.

    Article  PubMed  Google Scholar 

  60. • Yang B, Petrick JL, Kelly SP, Graubard BI, Freedman ND, McGlynn KA. Adiposity across the adult life course and incidence of primary liver cancer: the NIH-AARP cohort. Int J Cancer. 2017;141(2):271–8 Prospective US cohort study examining BMI at four timepoints throughout the adult lifecourse. This study suggests that maintaining a healthy BMI throughout the lifetime may reduce liver cancer risk.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Adams LA, Lymp JF, St Sauver J, Sanderson SO, Lindor KD, Feldstein A, et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology. 2005;129(1):113–21.

    Article  PubMed  Google Scholar 

  62. El-Serag HB, Hampel H, Javadi F. The association between diabetes and hepatocellular carcinoma: a systematic review of epidemiologic evidence. Clin Gastroenterol Hepatol. 2006;4(3):369–80.

    Article  PubMed  Google Scholar 

  63. Chen J, Han Y, Xu C, Xiao T, Wang B. Effect of type 2 diabetes mellitus on the risk for hepatocellular carcinoma in chronic liver diseases: a meta-analysis of cohort studies. Eur J Cancer Prev. 2015;24(2):89–99.

    Article  PubMed  Google Scholar 

  64. Wang C, Wang X, Gong G, Ben Q, Qiu W, Chen Y, et al. Increased risk of hepatocellular carcinoma in patients with diabetes mellitus: a systematic review and meta-analysis of cohort studies. Int J Cancer. 2012;130(7):1639–48.

    Article  CAS  PubMed  Google Scholar 

  65. Wang P, Kang D, Cao W, Wang Y, Liu Z. Diabetes mellitus and risk of hepatocellular carcinoma: a systematic review and meta-analysis. Diabetes Metab Res Rev. 2012;28(2):109–22.

    Article  CAS  PubMed  Google Scholar 

  66. Jinjuvadia R, Patel S, Liangpunsakul S. The association between metabolic syndrome and hepatocellular carcinoma: systemic review and meta-analysis. J Clin Gastroenterol. 2014;48(2):172–7.

    Article  CAS  PubMed  Google Scholar 

  67. Esposito K, Chiodini P, Colao A, Lenzi A, Giugliano D. Metabolic syndrome and risk of cancer: a systematic review and meta-analysis. Diabetes Care. 2012;35(11):2402–11.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Welzel TM, Graubard BI, Zeuzem S, El-Serag HB, Davila JA, McGlynn KA. Metabolic syndrome increases the risk of primary liver cancer in the United States: a study in the SEER-Medicare database. Hepatology. 2011;54(2):463–71.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Makarova-Rusher OV, Altekruse SF, McNeel TS, Ulahannan S, Duffy AG, Graubard BI, et al. Population attributable fractions of risk factors for hepatocellular carcinoma in the United States. Cancer. 2016;122(11):1757–65.

    Article  PubMed  PubMed Central  Google Scholar 

  70. World Health Organization. Fact Sheet on Overweight and Obesity. 2018. Available at: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed November 20, 2018.

  71. • Fan JG, Kim SU, Wong VW. New trends on obesity and NAFLD in Asia. J Hepatol. 2017;67(4):862–73 Report on the most recent prevalence estimates of non-alcoholic fatty liver disease in Asian populations.

    Article  PubMed  Google Scholar 

  72. Yoon KH, Lee JH, Kim JW, Cho JH, Choi YH, Ko SH, et al. Epidemic obesity and type 2 diabetes in Asia. Lancet. 2006;368(9548):1681–8.

    Article  PubMed  Google Scholar 

  73. Ramachandran A, Chamukuttan S, Shetty SA, Arun N, Susairaj P. Obesity in Asia--is it different from rest of the world. Diabetes Metab Res Rev. 2012;28(Suppl 2):47–51.

    Article  PubMed  Google Scholar 

  74. James WP. The epidemiology of obesity: the size of the problem. J Intern Med. 2008;263(4):336–52.

    Article  CAS  PubMed  Google Scholar 

  75. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4–14.

    Article  CAS  Google Scholar 

  76. •• Yu LX, Schwabe RF. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol. 2017;14(9):527–39 Review of the mechanistic links between the microbiome, leaky gut, and liver cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110(22):9066–71.

    Article  PubMed  PubMed Central  Google Scholar 

  78. •• Cani PD, Jordan BF. Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nat Rev Gastroenterol Hepatol. 2018;15(11):671–82 Review suggesting that leakage of microbial components across the intestinal barrier could be the mechanism underlying obesity and liver cancer risk.

    Article  CAS  PubMed  Google Scholar 

  79. • Fedirko V, Tran HQ, Gewirtz AT, Stepien M, Trichopoulou A, Aleksandrova K, et al. Exposure to bacterial products lipopolysaccharide and flagellin and hepatocellular carcinoma: a nested case-control study. BMC Med. 2017;15(1):72 Nested case-control study based in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort study. This was the first epidemiologic study examining markers of bacterial translocation in relation to liver cancer risk, reporting that the highest quartile of antibody response to LPS and flagellin was associated with a 12-times increased risk of liver cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. • Yang B, Petrick JL, Thistle JE, Pinto LA, Kemp TJ, Tran HQ, Gewirtz AT, Waterboer T, Fedirko V, Jenab M, Graubard BI, Weinstein SJ, Albanes D, McGlynn KA. Bacterial translocation and risk of liver cancer in a Finnish cohort. Cancer Epidemiol Biomarkers Prev. 2019;28(4):807–13. Nested case-control study in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) cohort. This study reported that anti-flagellin IgA and anti-LPS IgA were associated with a 2-3-times increased risk of liver cancer.

Download references

Funding

This work was supported by the National Institutes of Health Intramural Research Program, National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine A. McGlynn.

Ethics declarations

Conflict of Interest

The authors declare that they have no potential conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cancer Epidemiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrick, J.L., McGlynn, K.A. The Changing Epidemiology of Primary Liver Cancer. Curr Epidemiol Rep 6, 104–111 (2019). https://doi.org/10.1007/s40471-019-00188-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40471-019-00188-3

Keywords

Navigation