Skip to main content
Log in

Abstract

This paper is a survey of the literature about the nonlinear updating process. It is focused on the computation of the difference between the numerical model and the reference data as well as the algorithm uses to find the optimal parameters. In both parts of the nonlinear updating process, the popular approaches are presented. Special emphasis is given to methods based on Volterra series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Astroza R, Nguyen LT, Nestorović T (2016) Finite element model updating using simulated annealing hybridized with unscented Kalman filter. Comput Struct 177:176–191. doi:10.1016/j.compstruc.2016.09.001

    Article  Google Scholar 

  2. Barthe D, Deraemaeker A, Ladevèze P, Loch SL (2004) Validation and updating of industrial models based on the constitutive relation error. AIAA J 42(7):1427–1434. doi:10.2514/1.11882

    Article  Google Scholar 

  3. Bedrosian E, Rice S (1971) The output properties of Volterra systems (nonlinear systems with memory) driven by harmonic and gaussian inputs. Proc IEEE 59(12):1688–1707. doi:10.1109/PROC.1971.8525

    Article  MathSciNet  Google Scholar 

  4. Bellizzi S, Sampaio R (2006) POMs analysis of randomly vibrating systems obtained from Karhunen-Loève expansion. J Sound Vib 297(3–5):774–793. doi:10.1016/j.jsv.2006.04.023

    Article  MATH  Google Scholar 

  5. Bellizzi S, Sampaio R (2015) The smooth decomposition as a nonlinear modal analysis tool. Mech Syst Signal Process 64–65:245–256. doi:10.1016/j.ymssp.2015.04.015

    Article  Google Scholar 

  6. Billings S, Jamaluddin H, Chen S (1992) Properties of neural networks with applications to modelling non-linear dynamical systems. Int J Control 55(1):193–224. doi:10.1080/00207179208934232

    Article  MATH  Google Scholar 

  7. Bonte MHA, Fourment L, Do TT, van den Boogaard AH, Huétink J (2010) Optimization of forging processes using finite element simulations: a comparison of sequential approximate optimization and other algorithms. Struct Multidiscip Optim 42(5):797–810. doi:10.1007/s00158-010-0545-3

  8. Böswald M, Link M (2004) Identification of non-linear joint parameters by using frequency response residuals. In: Proceedings of the 2004 international conference on noise and vibration engineering (ISMA2004), Leuven, Belgium

  9. Brennan M, Kovacic I, Carrella A, Waters T (2008) On the jump-up and jump-down frequencies of the duffing oscillator. J Sound Vib 318(4–5):1250–1261. doi:10.1016/j.jsv.2008.04.032

    Article  Google Scholar 

  10. Brenner M, Jiang Y, Xu Y (2009) Multiparameter regularization for Volterra kernel identification via multiscale collocation methods. Adv Comput Math 31(4):421–455. doi:10.1007/s10444-008-9077-4

    Article  MATH  MathSciNet  Google Scholar 

  11. Bretthorst GL (1990) Maximum Entropy and Bayesian Methods. In: An introduction to parameter estimation using bayesian probability theory. Springer, Dordrecht, pp 53–79. doi:10.1007/978-94-009-0683-9_5

  12. Bussetta P, Shiki SB, da Silva S (2017) Updating of a nonlinear finite element model using discrete-time Volterra series. Lat Am J Solids Struct 14:1183–1199. doi:10.1590/1679-78253853

    Article  Google Scholar 

  13. Caicedo J, Zárate B (2011) Reducing epistemic uncertainty using a model updating cognitive system. Adv Struct Eng 14(1):55–65. doi:10.1260/1369-4332.14.1.55

    Article  Google Scholar 

  14. Campello RJ, do Amaral WC, Favier G (2006) A note on the optimal expansion of Volterra models using Laguerre functions. Automatica 42(4):689–693. doi:10.1016/j.automatica.2005.12.003

  15. Canyurt OE, Hajela P (2010) Cellular genetic algorithm technique for the multicriterion design optimization. Struct Multidiscip Optim 40(1):201–214. doi:10.1007/s00158-008-0351-3

    Article  Google Scholar 

  16. Castro C, António C, Sousa L (2004) Optimisation of shape and process parameters in metal forging using genetic algorithms. J Mater Process Technol 146(3):356–364. doi:10.1016/j.jmatprotec.2003.11.027

    Article  Google Scholar 

  17. Castro CF, Costa Sousa L, António C, de Sá JMAC (2001) An efficient algorithm to estimate optimal preform die shape parameters in forging. Eng Comput 18(8):1057–1077. doi:10.1108/02644400110409168

    Article  MATH  Google Scholar 

  18. Cavazzuti M (2013) Optimization methods. In: Deterministic optimization. Springer, Berlin, pp 77–102. doi:10.1007/978-3-642-31187-1_4

  19. Cavazzuti M (2013) Optimization methods. In: Stochastic optimization. Springer, Berlin, pp 103–130. doi:10.1007/978-3-642-31187-1_5

  20. Chatterjee A (2010) Parameter estimation of duffing oscillator using Volterra series and multi-tone excitation. Int J Mech Sci 52(12):1716–1722. doi:10.1016/j.ijmecsci.2010.09.005

    Article  Google Scholar 

  21. Chatterjee A, Vyas NS (2003) Non-linear parameter estimation with Volterra series using the method of recursive iteration through harmonic probing. J Sound Vib 268(4):657–678. doi:10.1016/S0022-460X(02)01537-7

    Article  Google Scholar 

  22. Chatterjee A, Vyas NS (2004) Non-linear parameter estimation in multi-degree-of-freedom systems using multi-input Volterra series. Mech Syst Signal Process 18(3):457–489. doi:10.1016/S0888-3270(03)00016-5

    Article  Google Scholar 

  23. Chen Q, Worden K, Peng P, Leung A (2007) Genetic algorithm with an improved fitness function for (N)ARX modelling. Mech Syst Signal Process 21(2):994–1007. doi:10.1016/j.ymssp.2006.01.011

    Article  Google Scholar 

  24. Chung S, Fourment L, Chenot J, Hwang S (2003) Adjoint state method for shape sensitivity analysis in non-steady forming applications. Int J Numer Methods Eng 57(10):1431–1444. doi:10.1002/nme.784

    Article  MATH  Google Scholar 

  25. Claeys M, Sinou JJ, Lambelin JP, Todeschini R (2016) Experiments and numerical simulations of nonlinear vibration responses of an assembly with friction joints–application on a test structure named “harmony”. Mech Syst Signal Process 70–71:1097–1116. doi:10.1016/j.ymssp.2015.08.024

    Article  Google Scholar 

  26. Cochelin B, Vergez C (2009) A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. J Sound Vib 324(1–2):243–262. doi:10.1016/j.jsv.2009.01.054

    Article  Google Scholar 

  27. Davoodi MR, Amiri JV, Gholampour S, Mostafavian SA (2012) Determination of nonlinear behavior of a ball joint system by model updating. J Constr Steel Res 71:52–62. doi:10.1016/j.jcsr.2011.11.011

    Article  Google Scholar 

  28. Deraemaeker A, Ladevèze P, Leconte P (2002) Reduced bases for model updating in structural dynamics based on constitutive relation error. Comput Methods Appl Mech Eng 191(21–22):2427–2444. doi:10.1016/S0045-7825(01)00421-2

    Article  MATH  Google Scholar 

  29. Detroux T, Renson L, Masset L, Kerschen G (2015) The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems. Comput Methods Appl Mech Eng 296(1):18–38. doi:10.1016/j.cma.2015.07.017

    Article  MathSciNet  Google Scholar 

  30. Dong XJ, Peng ZK, Zhang WM, Meng G, Chu FL (2013) Parametric characteristic of the random vibration response of nonlinear systems. Acta Mech Sin 29(2):267–283. doi:10.1007/s10409-013-0019-0

    Article  MATH  MathSciNet  Google Scholar 

  31. Ebrahimian H, Astroza R, Conte JP, de Callafon RA (2017) Nonlinear finite element model updating for damage identification of civil structures using batch Bayesian estimation. Mech Syst Signal Process 84:194–222. doi:10.1016/j.ymssp.2016.02.002

    Article  Google Scholar 

  32. Eski I (2012) Vibration analysis of drilling machine using proposed artificial neural network predictors. J Mech Sci Technol 26(10):3037–3046. doi:10.1007/s12206-012-0813-9

    Article  Google Scholar 

  33. Feijoo JV, Worden K, Stanway R (2006) Analysis of time-invariant systems in the time and frequency domain by associated linear equations (ALEs). Mech Syst Signal Process 20(4):896–919. doi:10.1016/j.ymssp.2005.03.004

    Article  Google Scholar 

  34. Feijoo JV, Worden K, Garcia PM, Rivera LL, Rodriguez NJ, Pérez AP (2010) Analysis of mdof nonlinear systems using associated linear equations. Mech Syst Signal Process 24(8):2824–2843. doi:10.1016/j.ymssp.2010.04.008

    Article  Google Scholar 

  35. Fourment L, Chenot J (1996) Optimal design for non-steady-state metal forming processes-1 shape optimization method. Int J Numer Methods Eng 39(1):33–50. doi:10.1002/(SICI)1097-0207(19960115)39:1<33::AID-NME844>3.0.CO;2-Z

    Article  MATH  Google Scholar 

  36. Friswell M, Mottershead JE (1995) Finite element model updating in structural dynamics. Springer, New York

    Book  MATH  Google Scholar 

  37. Galvanetto U, Violaris G (2007) Numerical investigation of a new damage detection method based on proper orthogonal decomposition. Mech Syst Signal Process 21(3):1346–1361. doi:10.1016/j.ymssp.2005.12.007

    Article  Google Scholar 

  38. Gou B, Zhang W, Lu Q, Wang B (2016) A successive selection method for finite element model updating. Mech Syst Signal Process 70–71:320–333. doi:10.1016/j.ymssp.2015.10.005

    Article  Google Scholar 

  39. Green P (2015) Bayesian system identification of a nonlinear dynamical system using a novel variant of simulated annealing. Mech Syst Signal Process 52–53:133–146. doi:10.1016/j.ymssp.2014.07.010

    Article  Google Scholar 

  40. Guchhait S, Banerjee B (2015) Constitutive error based material parameter estimation procedure for hyperelastic material. Comput Methods Appl Mech Eng 297:455–475. doi:10.1016/j.cma.2015.09.012

    Article  MathSciNet  Google Scholar 

  41. Guo Y, Guo LZ, Billings SA, Coca D, Lang ZQ (2013) Volterra series approximation of a class of nonlinear dynamical systems using the Adomian decomposition method. Nonlinear Dyn 74(1):359–371. doi:10.1007/s11071-013-0975-8

    Article  MATH  MathSciNet  Google Scholar 

  42. Hall KC, Thomas JP, Clark WS (2002) Computation of unsteady nonlinear flows in cascades using a harmonic balance technique. AIAA J 40(5):879–886. doi:10.2514/2.1754

    Article  Google Scholar 

  43. Hasançebi O, Dumlupinar T (2013) Linear and nonlinear model updating of reinforced concrete t-beam bridges using artificial neural networks. Comput Struct 119:1–11. doi:10.1016/j.compstruc.2012.12.017

    Article  Google Scholar 

  44. Isasa I, Hot A, Cogan S, Sadoulet-Reboul E (2011) Model updating of locally non-linear systems based on multi-harmonic extended constitutive relation error. Mech Syst Signal Process 25(7):2413–2425. doi:10.1016/j.ymssp.2011.03.010

    Article  Google Scholar 

  45. Jones JP (2007) Simplified computation of the Volterra frequency response functions of non-linear systems. Mech Syst Signal Process 21(3):1452–1468. doi:10.1016/j.ymssp.2005.10.013

    Article  Google Scholar 

  46. Juditsky A, Hjalmarsson H, Benveniste A, Delyon B, Ljung L, Sjöberg J, Zhang Q (1995) Nonlinear black-box models in system identification: mathematical foundations. Automatica 31(12):1725–1750. doi:10.1016/0005-1098(95)00119-1

    Article  MATH  MathSciNet  Google Scholar 

  47. Karaboga D, Gorkemli B (2014) A quick artificial bee colony (qabc) algorithm and its performance on optimization problems. Appl Soft Comput 23:227–238. doi:10.1016/j.asoc.2014.06.035

    Article  Google Scholar 

  48. Karkar S, Cochelin B, Vergez C (2013) A high-order, purely frequency based harmonic balance formulation for continuation of periodic solutions: the case of non-polynomial nonlinearities. J Sound Vib 332(4):968–977. doi:10.1016/j.jsv.2012.09.033

    Article  Google Scholar 

  49. Kerschen G, Golinval JC, Worden K (2001) Theoretical and experimental identification of a non-linear beam. J Sound Vib 244(4):597–613. doi:10.1006/jsvi.2000.3490

    Article  Google Scholar 

  50. Kerschen G, Lenaerts V, Golinval JC (2003a) Identification of a continuous structure with a geometrical non-linearity. Part I: conditioned reverse path method. J Sound Vib 262(4):889–906. doi:10.1016/S0022-460X(02)01151-3

    Article  Google Scholar 

  51. Kerschen G, Lenaerts V, Golinval JC (2003b) VTT benchmark: application of the restoring force surface method. Mech Syst Signal Process 17(1):189–193. doi:10.1006/mssp.2002.1558

    Article  Google Scholar 

  52. Kerschen G, Worden K, Vakakis AF, Golinval JC (2006) Past, present and future of nonlinear system identification in structural dynamics. Mechanical Systems and Signal Processing 20(3):505–592. doi:10.1016/j.ymssp.2005.04.008

    Article  Google Scholar 

  53. Keshavarz S, Khoei AR, Molaeinia Z (2013) Genetic algorithm-based numerical optimization of powder compaction process with temperature-dependent cap plasticity model. Int J Adv Manuf Technol 64(5):1057–1072. doi:10.1007/s00170-012-4053-z

    Article  Google Scholar 

  54. Keshavarzzadeh V, Masri S (2016) Identification of discontinuous nonlinear systems via a multivariate padé approach. J Comput Phys 306:520–545. doi:10.1016/j.jcp.2015.11.051

    Article  MATH  MathSciNet  Google Scholar 

  55. Khawar J, Zhigang W, Chao Y (2012) Volterra kernel identification of mimo aeroelastic system through multiresolution and multiwavelets. Comput Mech 49(4):431–458. doi:10.1007/s00466-011-0655-9

    Article  MATH  MathSciNet  Google Scholar 

  56. Kibangoua AY, Favier G, Hassani MM (2005) Selection of generalized orthonormal bases for second-order Volterra filters. Signal Process 85(12):2371–2385. doi:10.1016/j.sigpro.2005.02.020

    Article  MATH  Google Scholar 

  57. Kim SK, Lee WI, Lee JS (2002) Solving a nonlinear inverse convection problem using the sequential gradient method. KSME International Journal 16(5):710–719. doi:10.1007/BF03184821

    Article  Google Scholar 

  58. Kleijnen JP (2017) Regression and kriging metamodels with their experimental designs in simulation: a review. Eur J Oper Res 256(1):1–16. doi:10.1016/j.ejor.2016.06.041

    Article  MathSciNet  Google Scholar 

  59. Kovacic I, Brennan MJ (eds) (2011) The Duffing equation: nonlinear oscillators and their behaviour. Wiley, New York. doi:10.1002/9780470977859

  60. Lang Z, Billings S, Yue R, Li J (2007) Output frequency response function of nonlinear Volterra systems. Automatica 43(5):805–816. doi:10.1016/j.automatica.2006.11.013

    Article  MATH  MathSciNet  Google Scholar 

  61. Lang Z, Guo P, Takewaki I (2013) Output frequency response function based design of additional nonlinear viscous dampers for vibration control of multi-degree-of-freedom systems. J Sound Vib 332(19):4461–4481. doi:10.1016/j.jsv.2013.04.001

    Article  Google Scholar 

  62. Lauret P, Miranville F, Boyer H, Garde F, Adelard L (2005) Bayesian parameter estimation of convective heat transfer coefficients of a roof-mounted radiant barrier system. J Sol Energy Eng 128(2):213–225. doi:10.1115/1.2188957

    Article  Google Scholar 

  63. Lauret P, Fock E, Randrianarivony RN, Manicom-Ramsamy JF (2008) Bayesian neural network approach to short time load forecasting. Energy Convers Manag 49(5):1156–1166. doi:10.1016/j.enconman.2007.09.009

    Article  Google Scholar 

  64. Lauret P, David M, Calogine D (2012) Nonlinear models for short-time load forecasting. Energy Proc 14:1404–1409. doi:10.1016/j.egypro.2011.12.1109

    Article  Google Scholar 

  65. Lenaerts V, Kerschen G, Golinval J (2001) Proper orthogonal decomposition for model updating of non-linear mechanical systems. Mech Syst Signal Process 15(1):31–43. doi:10.1006/mssp.2000.1350

    Article  Google Scholar 

  66. Li G, Shi J (2010) On comparing three artificial neural networks for wind speed forecasting. Appl Energy 87(7):2313–2320. doi:10.1016/j.apenergy.2009.12.013

    Article  Google Scholar 

  67. Li G, Shi J, Zhou J (2011) Bayesian adaptive combination of short-term wind speed forecasts from neural network models. Renew Energy 36(1):352–359. doi:10.1016/j.renene.2010.06.049

    Article  Google Scholar 

  68. Li L, Billings S (2012) Piecewise Volterra modeling of the duffing oscillator in the frequency-domain. Mech Syst Signal Process 26:117–127. doi:10.1016/j.ymssp.2011.06.016

    Article  Google Scholar 

  69. Liao H (2014) Global resonance optimization analysis of nonlinear mechanical systems: application to the uncertainty quantification problems in rotor dynamics. Commun Nonlinear Sci Numer Simul 19(9):3323–3345. doi:10.1016/j.cnsns.2014.02.026

    Article  MathSciNet  Google Scholar 

  70. Link M (1998) Updating analytical models by using local and global parameters and relaxed optimisation requirements. Mech Syst Signal Process 12(1):7–22. doi:10.1006/mssp.1997.0131

    Article  MathSciNet  Google Scholar 

  71. Liu L, Dowell E, Thomas J (2007) A high dimensional harmonic balance approach for an aeroelastic airfoil with cubic restoring forces. J Fluids Struct 23(3):351–363. doi:10.1016/j.jfluidstructs.2006.09.005

    Article  Google Scholar 

  72. Lucia DJ, Beran PS, Silva WA (2004) Reduced-order modeling: new approaches for computational physics. Prog Aerosp Scie 40(1–2):51–117. doi:10.1016/j.paerosci.2003.12.001

    Article  Google Scholar 

  73. Marmarelis VZ (1993) Identification of nonlinear biological systems using laguerre expansions of kernels. Ann Biomed Eng 21(6):573–589. doi:10.1007/BF02368639

    Article  Google Scholar 

  74. Meyer S, Link M (2003) Modelling and updating of local non-linearities using frequency response residuals. Mech Syst Signal Process 17(1):219–226. doi:10.1006/mssp.2002.1563

    Article  Google Scholar 

  75. Moradi S, Fatahi L, Razi P (2010) Finite element model updating using bees algorithm. Struct Multidiscip Optim 42(2):283–291. doi:10.1007/s00158-010-0492-z

    Article  Google Scholar 

  76. Nguyen HM, Allix O, Feissel P (2008) A robust identification strategy for rate-dependent models in dynamics. Inverse Probl 24(6):065,006. doi:10.1088/0266-5611/24/6/065006

  77. Noël J, Kerschen G (2017) Nonlinear system identification in structural dynamics 10 more years of progress. Mech Syst Signal Process 83:2–35. doi:10.1016/j.ymssp.2016.07.020

    Article  Google Scholar 

  78. Olivencia Polo FA, Ferrero Bermejo J, Gómez Fernández JF, Crespo Márquez A (2015) Failure mode prediction and energy forecasting of PV plants to assist dynamic maintenance tasks by ANN based models. Renew Energy 81:227–238. doi:10.1016/j.renene.2015.03.023

    Article  Google Scholar 

  79. Orcioni S (2014) Improving the approximation ability of Volterra series identified with a cross-correlation method. Nonlinear Dyn 78(4):2861–2869. doi:10.1007/s11071-014-1631-7

    Article  MathSciNet  Google Scholar 

  80. Peeters J, Arroud G, Ribbens B, Dirckx J, Steenackers G (2015) Updating a finite element model to the real experimental setup by thermographic measurements and adaptive regression optimization. Mech Syst Signal Process, pp 64–65. doi:10.1016/j.ymssp.2015.04.010

  81. Peng Z, Lang Z, Billings S, Tomlinson G (2008) Comparisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis. J Sound Vib 311(1–2):56–73. doi:10.1016/j.jsv.2007.08.035

    Article  Google Scholar 

  82. Pham D, Ghanbarzadeh A, Koç E, Otri S, Rahim S, Zaidi M (2006) Intelligent production machines and systems. In: The bees algorithm—a novel tool for complex optimisation problems. Elsevier Science Ltd, Oxford, pp 454–459. doi:10.1016/B978-008045157-2/50081-X

  83. Platten M, Wright J, Dimitriadis G, Cooper J (2009) Identification of multi-degree of freedom non-linear systems using an extended modal space model. Mech Syst Signal Process 23(1):8–29. doi:10.1016/j.ymssp.2007.11.016

    Article  Google Scholar 

  84. Prazenica RJ, Kurdila AJ (2006) Multiwavelet constructions and Volterra kernel identification. Nonlinear Dyn 43(3):277–310. doi:10.1007/s11071-006-8323-x

    Article  MATH  MathSciNet  Google Scholar 

  85. da Rosa A, Campello RJ, Amaral WC (2007) Choice of free parameters in expansions of discrete-time Volterra models using Kautz functions. Automatica 43(6):2007. doi:10.1016/j.automatica.2006.12.007

    MATH  MathSciNet  Google Scholar 

  86. Rugh W (1981) Nonlinear system theory: the Volterra/Wiener approach. The Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  87. Schetzen M (1980) The Volterra and Wiener theories of nonlinear systems. Wiley, New York

    MATH  Google Scholar 

  88. Scussel O, da Silva S (2016) Output-only identification of nonlinear systems via Volterra series. J Vib Acoust 138(4):041,012. doi:10.1115/1.4033458

  89. Sekhar DC, Ganguli R (2012) Modified Newton, rank-1 Broyden update and rank-2 BFGS update methods in helicopter trim: a comparative study. Aerosp Sci Technol 23(1):187–200. doi:10.1016/j.ast.2011.07.005

    Article  Google Scholar 

  90. Shiki SB Jr, Lopes V, da Silva S (2013) Damage detection in nonlinear structures using discrete-time Volterra series. Key Eng Mater 569–570:876–883. doi:10.4028/www.scientific.net/KEM.569-570.876

  91. Shiki SB, Lopes V, da Silva S (2014) Identification of nonlinear structures using discrete-time Volterra series. J Braz Soc Mech Sci Eng 36(3):523–532. doi:10.1007/s40430-013-0088-9

    Google Scholar 

  92. Shiki SB, da Silva S, Todd MD (2016) On the application of discrete-time Volterra series for the damage detection problem in initially nonlinear systems. Struct Health Monit, pp 1–17. doi:10.1177/1475921716662142

  93. da Silva S (2011) Non-linear model updating of a three-dimensional portal frame based on wiener series. Int J Non Linear Mech 46(1):312–320. doi:10.1016/j.ijnonlinmec.2010.09.014

    Article  Google Scholar 

  94. da Silva S, Cogan S, Foltête E, Buffe F (2009) Metrics for nonlinear model updating in structural dynamics. J Braz Soc Mech Sci Eng 31(1):27–34. doi:10.1590/S1678-58782009000100005

    Article  Google Scholar 

  95. da Silva S, Cogan S, Foltête E (2010) Nonlinear identification in structural dynamics based on wiener series and Kautz filters. Mech Syst Signal Process 24(1):52–58. doi:10.1016/j.ymssp.2009.05.017

    Article  Google Scholar 

  96. Sun G, Li G, Li Q (2012) Variable fidelity design based surrogate and artificial bee colony algorithm for sheet metal forming process. Finite Elem Anal Des 59:76–90. doi:10.1016/j.finel.2012.04.012

    Article  Google Scholar 

  97. Thiene M, Zaccariotto M, Galvanetto U (2013) Application of proper orthogonal decomposition to damage detection in homogeneous plates and composite beams. J Eng Mech 139(11):1539–1550. doi:10.1061/(ASCE)EM.1943-7889.0000603

    Article  Google Scholar 

  98. Touzé C, Amabili M, Thomas O (2008) Reduced-order models for large-amplitude vibrations of shells including in-plane inertia. Comput Methods Appl Mech Eng 197(21–24):2030–2045. doi:10.1016/j.cma.2008.01.002

    Article  MATH  MathSciNet  Google Scholar 

  99. Čermelj P, Boltežar M (2006) Modelling localised nonlinearities using the harmonic nonlinear super model. J Sound Vib 298(4–5):1099–1112. doi:10.1016/j.jsv.2006.06.042

  100. Vismara SO, Ricci S, Bellini M, Trittoni L (2016) Non-linear spacecraft component parameters identification based on experimental results and finite element modelling. CEAS Space J. doi:10.1007/s12567-015-0110-4

    Google Scholar 

  101. Wiener N (1958) Nonlinear problems in random theory. Wiley and MIT Press, Cambridge

    MATH  Google Scholar 

  102. Worden K (1990a) Data processing and experiment design for the restoring force surface method, part I: integration and differentiation of measured time data. Mech Syst Signal Process 4(4):295–319. doi:10.1016/0888-3270(90)90010-I

    Article  Google Scholar 

  103. Worden K (1990b) Data processing and experiment design for the restoring force surface method, part II: choice of excitation signal. Mech Syst Signal Process 4(4):321–344. doi:10.1016/0888-3270(90)90011-9

    Article  Google Scholar 

  104. Worden K, Tomlinson GR (2001) Nonlinearity in structural dynamics–detection, identification and modelling. Institute of Physics Publishing, Bristol, Philadelphia

  105. Worden K, Manson G, Tomlinson G (1997) A harmonic probing algorithm for the multi-input Volterra series. J Sound Vib 201(1):67–84. doi:10.1006/jsvi.1996.0746

    Article  MATH  MathSciNet  Google Scholar 

  106. Wray J, Green GGR (1994) Calculation of the Volterra kernels of non-linear dynamic systems using an artificial neural network. Biol Cybern 71(3):187–195. doi:10.1007/BF00202758

    Article  MATH  Google Scholar 

  107. Wu T, Kareem A (2013) A nonlinear convolution scheme to simulate bridge aerodynamics. Comput Struct 128:259–271. doi:10.1016/j.compstruc.2013.06.004

    Article  Google Scholar 

  108. Wu T, Kareem A (2014) Simulation of nonlinear bridge aerodynamics: a sparse third-order Volterra model. J Sound Vib 333(1):178–188. doi:10.1016/j.jsv.2013.09.003

    Article  Google Scholar 

  109. Zárate BA, Caicedo JM (2008) Finite element model updating multiple alternatives. Eng Struct 30(12):3724–3730. doi:10.1016/j.engstruct.2008.06.012

    Article  Google Scholar 

  110. Zárate BA, Pollock A, Momeni S, Ley O (2015) Structural health monitoring of liquid-filled tanks: a Bayesian approach for location of acoustic emission sources. Smart Mater Struct 24(1):015,017. doi:10.1088/0964-1726/24/1/015017

  111. Zhao GQ, Hufi R, Hutter A, Grandhi RV (1997) Sensitivity analysis based preform die shape design using the finite element method. J Mater Eng Perform 6(3):303–310. doi:10.1007/s11665-997-0094-0

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this research from “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq); Grant number 313661/2014-6 and FAPESP; Grant number 12/09135-3. The second author is thankful to FAPESP for his scholarship Grant number 13/25148-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Bussetta.

Additional information

Technical Editor: Pedro Manuel Calas Lopes Pacheco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bussetta, P., Shiki, S.B. & da Silva, S. Nonlinear updating method: a review. J Braz. Soc. Mech. Sci. Eng. 39, 4757–4767 (2017). https://doi.org/10.1007/s40430-017-0905-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-017-0905-7

Keywords

Navigation