Skip to main content
Log in

Brain Stimulation as a Method for Understanding, Treating, and Preventing Disorders of Indulgent Food Consumption

  • Food Addiction (A Meule, Section Editor)
  • Published:
Current Addiction Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review is intended to describe the role of brain stimulation in knowledge generation, treatment, and prevention of clinical disorders of indulgent eating (e.g., obesity, bulimia, binge eating).

Recent Findings

Although both invasive and non-invasive variants of brain stimulation have been evaluated as treatments for disorders of indulgent eating, only non-invasive variants have been studied extensively. Among these, both repetitive transcranial magnetic stimulation (rTMS) and transcranial electrical stimulation (tES) have been evaluated in randomized trials; recent findings for both have been promising, but particularly so for a highly efficient variant of rTMS called theta burst stimulation. Laboratory experimental use of brain stimulation continues to provide important foundational knowledge to guide refinements of clinical treatments and—perhaps less intuitively—preventative efforts on the population level.

Summary

Brain stimulation methods show promise in treating several disorders of indulgent eating, although more randomized trials are required. Continued refinements to stimulation methods will yield important new knowledge in the service of both healthcare system-friendly treatment options and population-level preventative efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Breslin PAS. An evolutionary perspective on food and human taste. Curr Biol CB. 2013;23:R409–18.

    Article  CAS  PubMed  Google Scholar 

  2. Hall PA. Executive-control processes in high-calorie food consumption. Curr Dir Psychol Sci. 2016;25:91–8.

    Article  Google Scholar 

  3. Mennella JA. Ontogeny of taste preferences: basic biology and implications for health. Am J Clin Nutr. 2014;99:704S–11S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miyamoto T, Wright G, Amrein H. Nutrient sensors. Curr Biol. 2013;23:R369–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bures J, Bermudez-Rattoni F, Yamamoto T. Conditioned taste aversion: memory of a special kind [Internet]. Oxford University Press; 1998 [cited 2018 Dec 11]. Available from: http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780198523475.001.0001/acprof-9780198523475

  6. Logue AW. Taste aversion and the generality of the laws of learning. Psychol Bull 19790101. 1979;86:276.

    Article  Google Scholar 

  7. Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5:483–94.

    Article  CAS  PubMed  Google Scholar 

  8. Burke CJ, Tobler PN, Baddeley M, Schultz W. Neural mechanisms of observational learning. Proc Natl Acad Sci. 2010;107:14431–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants. Lancet. 2011;377:557–67.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rouhani MH, Haghighatdoost F, Surkan PJ, Azadbakht L. Associations between dietary energy density and obesity: a systematic review and meta-analysis of observational studies. Nutrition. 2016;32:1037–47.

    Article  PubMed  Google Scholar 

  11. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Castro DC, Berridge KC. Advances in the neurobiological bases for food “liking” versus “wanting”. Physiol Behav. 2014;136:22–30.

    Article  CAS  PubMed  Google Scholar 

  13. Stice E, Yokum S. Neural vulnerability factors that increase risk for future weight gain. Psychol Bull. 2016;142:447–71.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nangunoori RK, Tomycz ND, Oh MY, Whiting DM. Deep brain stimulation for obesity: from a theoretical framework to practical application. Neural Plast. 2016;2016:7971460.

    Article  CAS  PubMed  Google Scholar 

  15. Doucette WT, Khokhar JY, Green AI. Nucleus accumbens deep brain stimulation in a rat model of binge eating. Transl Psychiatry. 2015;5:e695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Halpern CH, Tekriwal A, Santollo J, Keating JG, Wolf JA, Daniels D, et al. Amelioration of binge eating by nucleus accumbens shell deep brain stimulation in mice involves D2 receptor modulation. J Neurosci. 2013;33:7122–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van der Plasse G, Schrama R, van SSP, Vanderschuren LJMJ, Westenberg HGM. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat. PLoS One. 2012;7:e33455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang C, Wei N-L, Wang Y, Wang X, Zhang J-G, Zhang K. Deep brain stimulation of the nucleus accumbens shell induces anti-obesity effects in obese rats with alteration of dopamine neurotransmission. Neurosci Lett. 2015;589:1–6.

    Article  CAS  PubMed  Google Scholar 

  19. Wei N, Wang Y, Wang X, He Z, Zhang M, Zhang X, et al. The different effects of high-frequency stimulation of the nucleus accumbens shell and core on food consumption are possibly associated with different neural responses in the lateral hypothalamic area. Neuroscience. 2015;301:312–22.

    Article  CAS  PubMed  Google Scholar 

  20. Denys D, Mantione M, Figee M, van den Munckhof P, Koerselman F, Westenberg H, et al. Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. Arch Gen Psychiatry. 2010;67:1061–8.

    Article  PubMed  Google Scholar 

  21. Harat M, Rudaś M, Zieliński P, Birska J, Sokal P. Nucleus accumbens stimulation in pathological obesity. Neurol Neurochir Pol. 2016;50:207–10.

    Article  PubMed  Google Scholar 

  22. Tronnier VM, Rasche D, Thorns V, Alvarez-Fischer D, Münte TF, Zurowski B. Massive weight loss following deep brain stimulation of the nucleus accumbens in a depressed woman. Neurocase. 2018;24:49–53.

    Article  PubMed  Google Scholar 

  23. Whiting DM, Tomycz ND, Bailes J, de Jonge L, Lecoultre V, Wilent B, et al. Lateral hypothalamic area deep brain stimulation for refractory obesity: a pilot study with preliminary data on safety, body weight, and energy metabolism. J Neurosurg. 2013;119:56–63.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Oterdoom DLM, van Dijk G, Verhagen MHP, Jiawan VCR, Drost G, Emous M, et al. Therapeutic potential of deep brain stimulation of the nucleus accumbens in morbid obesity. Neurosurg Focus. 2018;45:E10.

    Article  PubMed  Google Scholar 

  25. Grossman N, Bono D, Dedic N, Kodandaramaiah SB, Rudenko A, Suk H-J, et al. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell. 2017;169:1029–1041.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gunduz A, Okun MS. A new non-surgical approach for deep-brain stimulation. Lancet Neurol. 2017;16:e1.

    Article  PubMed  Google Scholar 

  27. Hall PA, Lowe CJ. Cravings, currents and cadavers: what is the magnitude of tDCS effects on food craving outcomes? Nutr Neurosci. 2018. https://doi.org/10.1080/1028415X.2018.1513678.

  28. Berlim MT, van den Eynde F, Tovar-Perdomo S, Daskalakis ZJ. Response, remission and drop-out rates following high-frequency repetitive transcranial magnetic stimulation (rTMS) for treating major depression: a systematic review and meta-analysis of randomized, double-blind and sham-controlled trials. Psychol Med. 2014;44:225–39.

    Article  CAS  PubMed  Google Scholar 

  29. • Dunlop K, Hanlon CA, Downar J. Noninvasive brain stimulation treatments for addiction and major depression. Ann N Y Acad Sci. 2017;1394:31–54 Describes the primary clinical research applications of non-invasive brain stimulation protocols in psychiatric populations.

    Article  PubMed  Google Scholar 

  30. Hall PA, Vincent CM, Burhan AM. Non-invasive brain stimulation for food cravings, consumption, and disorders of eating: a review of methods, findings and controversies. Appetite. 2018;124:78–88.

    Article  PubMed  Google Scholar 

  31. Jansen JM, Daams JG, Koeter MWJ, Veltman DJ, van den Brink W, Goudriaan AE. Effects of non-invasive neurostimulation on craving: a meta-analysis. Neurosci Biobehav Rev. 2013;37:2472–80.

    Article  PubMed  Google Scholar 

  32. • Kim S-H, Chung J-H, Kim T-H, Lim SH, Kim Y, Lee Y-A, et al. The effects of repetitive transcranial magnetic stimulation on eating behaviors and body weight in obesity: a randomized controlled study. Brain Stimulat. 2018;11:528–35 This paper describes the findings of a randomized trial examining the effects of rTMS on eating and weight outcomes in overweight adults. It is the first study to examine theta burst variant of rTMS for this purpose.

    Article  Google Scholar 

  33. Baczynski TP, de Aquino Chaim CH, Nazar BP, Carta MG, Arias-Carrion O, Silva AC, et al. High-frequency rTMS to treat refractory binge eating disorder and comorbid depression: a case report. CNS Neurol Disord Drug Targets. 2014;13:771–5.

    Article  CAS  PubMed  Google Scholar 

  34. Guillaume S, Gay A, Jaussent I, Sigaud T, Billard S, Attal J, et al. Improving decision-making and cognitive impulse control in bulimia nervosa by rTMS: an ancillary randomized controlled study. Int J Eat Disord. 2018;51:1103–6.

    Article  PubMed  Google Scholar 

  35. Uher R, Yoganathan D, Mogg A, Eranti SV, Treasure J, Campbell IC, et al. Effect of left prefrontal repetitive transcranial magnetic stimulation on food craving. Biol Psychiatry. 2005;58:840–2.

    Article  PubMed  Google Scholar 

  36. Van den Eynde F, Claudino AM, Mogg A, Horrell L, Stahl D, Ribeiro W, et al. Repetitive transcranial magnetic stimulation reduces cue-induced food craving in bulimic disorders. Biol Psychiatry. 2010;67:793–5.

    Article  PubMed  Google Scholar 

  37. • Hanlon CA, Philip NS, Price RB, Bickel WK, Downar J. A case for the frontal pole as an empirically derived neuromodulation treatment target. 2019;85(3):e13–14. Describes the rationale for the frontal pole as a novel stimulation target for rTMS protocols.

  38. Hanlon CA, Dowdle LT, Correia B, Mithoefer O, Kearney-Ramos T, Lench D, et al. Left frontal pole theta burst stimulation decreases orbitofrontal and insula activity in cocaine users and alcohol users. Drug Alcohol Depend. 2017;178:310–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cooper Z, Doll HA, Hawker DM, Byrne S, Bonner G, Eeley E, et al. Testing a new cognitive behavioural treatment for obesity: a randomized controlled trial with three-year follow-up. Behav Res Ther. 2010;48:706–13.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Stillman CM, Erickson KI. Physical activity as a model for health neuroscience. Ann N Y Acad Sci. 2018;1428:103–11.

    Article  PubMed  Google Scholar 

  41. Miyake A, Friedman NP. The nature and organization of individual differences in executive functions: four general conclusions. Curr Dir Psychol Sci. 2012;21:8–14.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yuan P, Raz N. Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies. Neurosci Biobehav Rev. 2014;42:180–92.

    Article  PubMed  Google Scholar 

  43. Lowe CJ, Kolev D, Hall PA. An exploration of exercise-induced cognitive enhancement and transfer effects to dietary self-control. Brain Cogn. 2016;110:102–11.

    Article  PubMed  Google Scholar 

  44. Huang Y-Z, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45:201–6.

    Article  CAS  PubMed  Google Scholar 

  45. Huang Y-Z, Rothwell JC, Chen R-S, Lu C-S, Chuang W-L. The theoretical model of theta burst form of repetitive transcranial magnetic stimulation. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2011;122:1011–8.

    Article  Google Scholar 

  46. Lowe CJ, Manocchio F, Safati AB, Hall PA. The effects of theta burst stimulation (TBS) targeting the prefrontal cortex on executive functioning: a systematic review and meta-analysis. Neuropsychologia. 2018;111:344–59.

    Article  PubMed  Google Scholar 

  47. Suppa A, Huang Y-Z, Funke K, Ridding MC, Cheeran B, Di Lazzaro V, et al. Ten years of Theta burst stimulation in humans: established knowledge, unknowns and prospects. Brain Stimulat. 2016;9:323–35.

    Article  CAS  Google Scholar 

  48. • Lowe CJ, Staines WR, Manocchio F, Hall PA. The neurocognitive mechanisms underlying food cravings and snack food consumption. A combined continuous theta burst stimulation (cTBS) and EEG study. NeuroImage. 2018;177:45–58 Identifies the dlPFC as an important node in modulation of food craving and consumption, and provides mediational analyses for observed effects.

    Article  PubMed  Google Scholar 

  49. Lowe CJ, Hall PA, Staines WR. The effects of continuous Theta burst stimulation to the left dorsolateral prefrontal cortex on executive function, food cravings, and snack food consumption. Psychosom Med. 2014;76:503–11.

    Article  PubMed  Google Scholar 

  50. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167–202.

    Article  CAS  PubMed  Google Scholar 

  51. Gollwitzer PM. The goal concept: a helpful tool for theory development and testing in motivation science. Motiv Sci. 2018;4:185–205.

    Article  Google Scholar 

  52. Prestwich A, Sheeran P, Webb T, Gollwitzer P. Implementation intentions. Predict Chang Health Behav Res Pract Soc Cogn Models. New York: McGraw Hill Education; 2015. p. 321–57.

    Google Scholar 

  53. Stadler G, Oettingen G, Gollwitzer PM. Intervention effects of information and self-regulation on eating fruits and vegetables over two years. Health Psychol Off J Div Health Psychol Am Psychol Assoc. 2010;29:274–83.

    Google Scholar 

  54. Hall PA, Zehr CE, Ng M, Zanna MP. Implementation intentions for physical activity in supportive and unsupportive environmental conditions: an experimental examination of intention–behavior consistency. J Exp Soc Psychol. 2012;48:432–6.

    Article  Google Scholar 

  55. Loy LS, Wieber F, Gollwitzer PM, Oettingen G. Supporting Sustainable Food Consumption: Mental Contrasting with Implementation Intentions (MCII) aligns intentions and behavior. Front Psychol [Internet]. 2016 [cited 2018 Dec 11];7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4850472/

  56. Schweiger Gallo I, Cohen A-L, Gollwitzer PM, Oettingen G. Neurophysiological correlates of the self-regulation of goal pursuit. In: Hall PA, editor. Soc Neurosci Public Health Found Sci Chronic Dis Prev [Internet]. New York, NY: Springer New York; 2013. p. 19–33. https://doi.org/10.1007/978-1-4614-6852-3_2.

    Chapter  Google Scholar 

  57. Lowe CJ, Safati A, Hall PA. The neurocognitive consequences of sleep restriction: a meta-analytic review. Neurosci Biobehav Rev. 2017;80:586–604.

    Article  PubMed  Google Scholar 

  58. McEwen BS, Bowles NP, Gray JD, Hill MN, Hunter RG, Karatsoreos IN, et al. Mechanisms of stress in the brain. Nat Neurosci. 2015;18:1353–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lowe CJ, Reichelt AC, Hall PA. The Prefrontal Cortex and Obesity: A Health Neuroscience Perspective. Trends in Cog Sci. 2019. https://doi.org/10.1016/j.tics.2019.01.005.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Hall.

Ethics declarations

Conflict of Interest

The author declares no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Food Addiction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hall, P.A. Brain Stimulation as a Method for Understanding, Treating, and Preventing Disorders of Indulgent Food Consumption. Curr Addict Rep 6, 266–272 (2019). https://doi.org/10.1007/s40429-019-00241-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40429-019-00241-7

Keywords

Navigation