Skip to main content

Advertisement

Log in

Digital PET for recurrent prostate cancer: how the technology help

  • Mini-Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Digital PET is characterized by high sensitivity, spatial and temporal resolution, with growing applications of this technology both in clinical practice and in research settings. Further studies are needed, but the role of digital PET imaging in recurrent prostate cancer is promising, especially in terms of increasing detection rate of the disease. The aim of this mini-review is to provide a general overview of digital PET imaging in recurrent prostate cancer field, by describing the published results and by discussing the open question related to known advantages and eventual disadvantages of using this novel technology. Literature findings concerning Digital PET in recurrent prostate cancer field have been described and discussed, including comparative studies between Analogue and Digital PET scanners; pitfalls in the interpretation of Digital scan, identified in the literature’s data extracted, have been presented. Moreover, this review discusses open questions concerning acquisition and reconstruction protocols of Digital scans with tracers used in prostate cancer imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Donswijk ML, Morigi JJ, Little A, Vogel WV, van Leeuwen PJ (2020) Where to next prostate-specific membrane antigen PET imaging frontiers? Curr Opin Urol 30(5):672–678. https://doi.org/10.1097/MOU.0000000000000797

    Article  PubMed  Google Scholar 

  3. Filippi L, Schillaci O (2021) Digital PET and detection of recurrent prostate cancer: what have we gained, and what is still missing? Expert Rev Med Devices 18(11):1107–1110. https://doi.org/10.1080/17434440.2021.1990036

    Article  CAS  PubMed  Google Scholar 

  4. Filippi L, Dimitrakopoulou-Strauss A, Evangelista L, Schillaci O (2022) Long axial field-of-view PET/CT devices: are we ready for the technological revolution? Expert Rev Med Devices 19(10):739–743. https://doi.org/10.1080/17434440.2022.2141111

    Article  CAS  PubMed  Google Scholar 

  5. Salvadori J, Odille F, Verger A et al (2020) Head-to-head comparison between digital and analog PET of human and phantom images when optimized for maximizing the signal-to-noise ratio from small lesions. EJNMMI Phys 7(1):11. https://doi.org/10.1186/s40658-020-0281-8

    Article  PubMed  PubMed Central  Google Scholar 

  6. López-Mora DA, Carrió I, Flotats A (2022) Digital PET vs analog PET: clinical implications? Semin Nucl Med 52(3):302–311. https://doi.org/10.1053/j.semnuclmed.2021.10.004. (Epub 2021 Nov 24 PMID: 34836617)

    Article  PubMed  Google Scholar 

  7. Katal S, Eibschutz LS, Saboury B et al (2022) Advantages and applications of total-body PET scanning. Diagnostics 12(2):426

    Article  PubMed  PubMed Central  Google Scholar 

  8. Alberts I, Prenosil G, Mingels C et al (2021) Feasibility of late acquisition [68Ga]Ga-PSMA-11 PET/CT using a long axial field-of-view PET/CT scanner for the diagnosis of recurrent prostate cancer-first clinical experiences. Eur J Nucl Med Mol Imaging 48(13):4456–4462. https://doi.org/10.1007/s00259-021-05438-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schillaci O, Urbano N (2019) Digital PET/CT: a new intriguing chance for clinical nuclear medicine and personalized molecular imaging. Eur J Nucl Med Mol Imaging 46(6):1222–1225. https://doi.org/10.1007/s00259-019-04300-z. (Epub 2019 Mar 11 PMID: 30859431)

    Article  PubMed  Google Scholar 

  10. Slart RHJA, Tsoumpas C, Glaudemans AWJM, Noordzij W, Willemsen ATM, Borra RJH, Dierckx RAJO, Lammertsma AA (2021) Long axial field of view PET scanners: a road map to implementation and new possibilities. Eur J Nucl Med Mol Imaging. 48(13):4236–4245. https://doi.org/10.1007/s00259-021-05461-6. (PMID: 34136956; PMCID: PMC8566640)

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vierasu I, Trotta N, Albisinni S et al (2022) Clinical experience with 18F-JK-PSMA-7 when using a digital PET/CT. Eur J Hybrid Imaging 6(1):6. https://doi.org/10.1186/s41824-022-00128-3

    Article  PubMed  PubMed Central  Google Scholar 

  12. Alberts I, Prenosil G, Sachpekidis C et al (2020) Digital versus analogue PET in [68Ga]Ga-PSMA-11 PET/CT for recurrent prostate cancer: a matched-pair comparison. Eur J Nucl Med Mol Imaging 47(3):614–623. https://doi.org/10.1007/s00259-019-04630-y

    Article  CAS  PubMed  Google Scholar 

  13. Olde Heuvel J, de Wit-van derVeen BJ, Sinaasappel M, Slump CH, Stokkel MPM (2021) Early differences in dynamic uptake of 68Ga-PSMA-11 in primary prostate cancer: a test-retest study. PLoS One. 16(2):e0246394. https://doi.org/10.1371/journal.pone.0246394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maliha PG, Singerman J, Abikhzer G, Probst S (2021) Physiologic prostate-specific membrane antigen-targeted 18F-DCFPyL uptake in the epididymis head newly appreciated on digital PET/CT. Nucl Med Commun 42(5):490–494. https://doi.org/10.1097/MNM.0000000000001363

    Article  CAS  PubMed  Google Scholar 

  15. Kisiel N, Thomas P (2022) Potential pitfall in the interpretation of ganglioneuronal uptake of 18 F-PSMA-1007 PET/CT scans performed with a high spatial resolution digital PET scanner. Clin Nucl Med 47(9):807–808. https://doi.org/10.1097/RLU.0000000000004310

    Article  PubMed  Google Scholar 

  16. Filippi L, Bagni O, Schillaci O (2022) Digital PET/CT with 18F-FACBC in early castration-resistant prostate cancer: our preliminary results. Expert Rev Med Devices 19(7):591–598. https://doi.org/10.1080/17434440.2022.2117612

    Article  CAS  PubMed  Google Scholar 

  17. Pizzuto DA, Triumbari EKA, Morland D et al (2022) 18F-fluoroethylcholine PET/CT radiomic analysis for newly diagnosed prostate cancer patients: a monocentric study. Int J Mol Sci 23(16):9120. https://doi.org/10.3390/ijms23169120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alberts I, Schepers R, Zeimpekis K, Sari H, Rominger A, Afshar-Oromieh A (2022) Combined [68 Ga]Ga-PSMA-11 and low-dose 2-[18F]FDG PET/CT using a long-axial field of view scanner for patients referred for [177Lu]-PSMA-radioligand therapy. Eur J Nucl Med Mol Imaging. https://doi.org/10.1007/s00259-022-05961-z

    Article  PubMed  PubMed Central  Google Scholar 

  19. Alberts I, Hünermund JN, Prenosil G et al (2021) Clinical performance of long axial field of view PET/CT: a head-to-head intra-individual comparison of the biograph vision Quadra with the biograph vision PET/CT. Eur J Nucl Med Mol Imaging 48(8):2395–2404. https://doi.org/10.1007/s00259-021-05282-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alberts I, Hünermund JN, Sachpekidis C et al (2021) The influence of digital PET/CT on diagnostic certainty and interrater reliability in [68Ga]Ga-PSMA-11 PET/CT for recurrent prostate cancer. Eur Radiol 31(10):8030–8039. https://doi.org/10.1007/s00330-021-07870-5

    Article  PubMed  PubMed Central  Google Scholar 

  21. Grünig H, Maurer A, Thali Y et al (2021) Focal unspecific bone uptake on [18F]-PSMA-1007 PET: a multicenter retrospective evaluation of the distribution, frequency, and quantitative parameters of a potential pitfall in prostate cancer imaging. Eur J Nucl Med Mol Imaging 48(13):4483–4494. https://doi.org/10.1007/s00259-021-05424-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bjöersdorff M, Puterman C, Oddstig J et al (2022) Detection of lymph node metastases in patients with prostate cancer: comparing conventional and digital [18 F]-fluorocholine PET-CT using histopathology as a reference. Clin Physiol Funct Imaging 42(6):381–388. https://doi.org/10.1111/cpf.12770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jonmarker O, Axelsson R, Nilsson T, Gabrielson S (2021) Comparison of regularized reconstruction and ordered subset expectation maximization reconstruction in the diagnostics of prostate cancer using digital time-of-flight 68Ga-PSMA-11 PET/CT imaging. Diagnostics (Basel) 11(4):630. https://doi.org/10.3390/diagnostics11040630

    Article  CAS  PubMed  Google Scholar 

  24. Matej S, Kazantsev IG (2006) Fourier-based reconstruction for fully 3-D PET: optimization of interpolation parameters. IEEE Trans Med Imaging 25(7):845–854. https://doi.org/10.1109/tmi.2006.873219

    Article  PubMed  Google Scholar 

  25. Tong S, Alessio AM, Kinahan PE (2010) Image reconstruction for PET/CT scanners: past achievements and future challenges. Imaging Med 2(5):529–545. https://doi.org/10.2217/iim.10.49

    Article  PubMed  PubMed Central  Google Scholar 

  26. https://www.gehealthcare.com.sg/-/jssmedia/739d885baa59485aaef5ac0e0eeb44a4.pdf.

  27. Lindström E, Velikyan I, Regula N et al (2019) Regularized reconstruction of digital time-of-flight 68Ga-PSMA-11 PET/CT for the detection of recurrent disease in prostate cancer patients. Theranostics 9(12):3476–3484. https://doi.org/10.7150/thno.31970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang FJ, Ai SY, Wu R et al (2021) Impact of total variation regularized expectation maximization reconstruction on the image quality of 68Ga-PSMA PET: a phantom and patient study. Br J Radiol 94(1120):20201356. https://doi.org/10.1259/bjr.20201356

    Article  PubMed  PubMed Central  Google Scholar 

  29. Xie H, Lv Y, Dong Y (2019) Impact of sensitivity map and noise equivalent counts on hyper-parameter selection for regularized image reconstruction. J Nucl Med 60(supplement 1):454

    Google Scholar 

  30. Sawatzky A, Brune C, Köösters T, Wüübbeling F, Burger M (2013) EM-TV methods for inverse problems with Poisson noise. Level set and PDE based reconstruction methods in imaging. Lecture notes in mathematics, vol 2090. Springer, Cham, pp 71–1

    Chapter  Google Scholar 

  31. Fragoso Costa P, Jentzen W, Süßelbeck F et al (2021) Reduction of emission time for [68Ga]Ga-PSMA PET/CT using the digital biograph vision: a Phantom study. Q J Nucl Med Mol Imaging. https://doi.org/10.23736/S1824-4785.21.03300-8

    Article  PubMed  Google Scholar 

  32. Weber M, Jentzen W, Hofferber R et al (2021) Evaluation of [68Ga]Ga-PSMA PET/CT images acquired with a reduced scan time duration in prostate cancer patients using the digital biograph vision. EJNMMI Res 11(1):21. https://doi.org/10.1186/s13550-021-00765-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alberts I, Niklas-Hünermund J, Sachpekidis C et al (2021) Combination of forced diuresis with additional late imaging in 68Ga-PSMA-11 PET/CT: effects on lesion visibility and radiotracer uptake. J Nucl Med 62(9):1252–1257. https://doi.org/10.2967/jnumed.120.257741

    Article  CAS  PubMed  Google Scholar 

  34. Afshar-Oromieh A, Sattler LP, Mier W et al (2017) The clinical impact of additional late PET/CT imaging with 68Ga-PSMA-11 (HBED-CC) in the diagnosis of prostate cancer. J Nucl Med 58(5):750–755. https://doi.org/10.2967/jnumed.116.183483

    Article  CAS  PubMed  Google Scholar 

  35. Alberts I, Sachpekidis C, Dijkstra L et al (2020) The role of additional late PSMA-ligand PET/CT in the differentiation between lymph node metastases and ganglia. Eur J Nucl Med Mol Imaging 47(3):642–651. https://doi.org/10.1007/s00259-019-04552-9

    Article  CAS  PubMed  Google Scholar 

  36. Fendler WP, Eiber M, Beheshti M et al (2017) 68Ga-PSMA PET/CT: joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur J Nucl Med Mol Imaging 44(6):1014–1024. https://doi.org/10.1007/s00259-017-3670-z

    Article  PubMed  Google Scholar 

  37. Sah BR, Stolzmann P, Delso G et al (2017) Clinical evaluation of a block sequential regularized expectation maximization reconstruction algorithm in 18F-FDG PET/CT studies. Nucl Med Commun 38(1):57–66. https://doi.org/10.1097/MNM.0000000000000604

    Article  PubMed  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

MR had the idea for the article, MR and AC performed the literature search and data analysis, and MR, MRGF and DP drafted the work, GDV, BC and AC critically revised the work. All authors have read and agreed to the published version of the manuscript.”

Corresponding author

Correspondence to Maria Ricci.

Ethics declarations

Conflict of interest

MR, BC, DP, MRGF, GV and AC declare no conflict of interest and compliance with Ethical Standards.

Informed consent

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricci, M., Carabellese, B., Pietroniro, D. et al. Digital PET for recurrent prostate cancer: how the technology help. Clin Transl Imaging 11, 329–337 (2023). https://doi.org/10.1007/s40336-023-00545-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-023-00545-9

Keywords

Navigation