Skip to main content
Log in

Transformation of solar wind energy into the energy of magnetospheric processes

  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

When the solar wind flows round the magnetosphere, its flow structure and interplanetary magnetic field lines are affected. This indicates the appearance of an electric current system in near-Earth space. the magnetized solar wind plasma moving at the solar wind velocity in the coordinate system of near-earth bow shock induces an electric field in this system. When crossing the bow shock front at the nose point, the tangential magnetic field component increases nearly four times, and the magnetic field energy density—15 times.

This paper relies on the results of earlier researches (Ponomarev et al. 2006a, 2006b), where we obtained the expression for electric current generated in the bow shock front and closed through the magnetosphere, as well as finding the magnetopause potential as a function of solar wind parameters—solar wind velocity and B z -component of the interplanetary magnetic field. The power W consumed by the magnetosphere is equal to the Poynting flux through the magnetopause. According to a special case of Poynting’s theorem, applied to the geomagnetosphere, the energy flux can be expressed through electric potential (integration is over the entire magnetospheric surface). Thus, we obtain the required dependence for W. This dependence appears to be a square law relative to IMF B z -component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Balogh et al. (2005) Cluster at the bow shock: introduction. Space Sci Rev 118:155–160

    Article  Google Scholar 

  • Crooker NU, Siscoe GL, Mullen PR, Russell CT, Smith EJ (1982) Magnetic field compression at the dayside magnetopause. J Geophys Res 87(A12):10407–10412

    Article  Google Scholar 

  • Leonovich AS (1999) Energy flux of magnetosonic waves from the solar wind into the magnetosphere. Geomagn Aeron 39(2):52–55

    Google Scholar 

  • Madelung E (1957) Die Mathematischen Hilfsmittel des Physikers. Springer, Berlin

    Book  Google Scholar 

  • Madelung E (1960) The mathematical apparat of physics. GIFML, Moscow, p 618 (in Russian)

    Google Scholar 

  • Perreault P, Akasofu S-I (1978) A study of geomagnetic storms. Geophys J R Astron Soc 54:547–551

    Article  Google Scholar 

  • Ponomarev EA (1985) Mechanisms of magnetospheric substorms, M. Nauka, Moscow, p 157 (in Russian)

    Google Scholar 

  • Ponomarev EA, Sedykh PA, Urbanovich VD (2006a) Bow shock as a power source for magnetospheric processes. J Atmos Sol-Terr Phys 68:685–690

    Article  Google Scholar 

  • Ponomarev EA, Sedykh PA, Urbanovich VD (2006b) Generation of electric field in the magnetosphere, caused by processes in the bow shock. J Atmos Sol-Terr Phys 68:679–684

    Article  Google Scholar 

  • Pudovkin MI, Kozelov VP, Lazutin LL, Troshichev OA, Chertkov AD (1977) Physical basis of magnetospheric disturbance forecasting, L. Nauka, Moscow, p 312 (in Russian)

    Google Scholar 

  • Santolik O, Sedykh P, Wang X, Kakad A, Tang R, Zhou X, Huang Z (2004) Case studies of wave phenomena in the earth’s bow shock region. In: 3rd regional COSPAR workshop. Beijing, pp 10–14

    Google Scholar 

  • Sedykh PA (2011) The relief of plasma pressure and generation of field-aligned currents in the magnetosphere. Astron Astrophys 1:15–24. ISSN 2161-4725

    Google Scholar 

  • Sedykh PA, Ponomarev EA (2002) Magnetosphere-ionosphere coupling in the region of auroral electrojets. Geomagn Aeron 42(5):582–587

    Google Scholar 

  • Sedykh PA, Ponomarev EA (2012) A structurally adequate model of the geomagnetosphere. Stud Geophys Geod 56:1079–1093. doi:10.1007/s11200-011-9027-3

    Article  Google Scholar 

  • Whang YC (1987) Slow shocks and their transition to fast shocks in the inner solar wind. J Geophys Res 92(5):4349–4356

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Sedykh.

Appendix: Parabolic system of coordinates; in terms of Madelung (1957, 1960)

Appendix: Parabolic system of coordinates; in terms of Madelung (1957, 1960)

  • In general case:

    $$\frac{u + iv}{\sqrt{2}} = \sqrt{z + i\rho}\quad \bigl(\rho = \sqrt{x^{2} + y^{2}}\bigr) $$
    $$u^{2} = r + z,\quad \mbox{where}\ r = \sqrt{z^{2} + \rho^{2}},\ x = uv\cos (\varphi ),\ 0 \le u \le \infty $$
    $$v^{2} = r - z,\qquad y = uv\sin (\varphi ),\quad 0 \le v \le \infty $$
    $$\varphi = \arctan \frac{y}{x},\qquad z = \frac{u^{2} - v^{2}}{2},\quad 0 \le \varphi \le 2\pi $$
    $$\rho = uv,\qquad r = \frac{u^{2} + v^{2}}{2},\qquad\frac{\partial u}{\partial \rho} = \frac{1}{2u}\frac{\rho}{r},\qquad \frac{\partial v}{\partial p}=\frac{1}{2v}\frac{\rho}{r},\qquad \frac{\partial u}{\partial z} = \frac{\partial v}{\partial \rho}. $$
  • Linear element:

    $$ds^{2} = \bigl(u^{2} + v^{2}\bigr) \bigl(du^{2} + dv^{2}\bigr) + u^{2}v^{2}d \varphi^{2}. $$
    $$D = \frac{1}{u^{2} + v^{2}} = \frac{1}{2r}. $$
  • Element of volume:

    $$dV = uv\bigl(u^{2} + v^{2}\bigr)dudvd\varphi. $$
  • Vector components:

    $$a_{u} = \frac{a_{x}x + a_{y}y}{\sqrt{2r(r + z)}} + a_{z}\sqrt{\frac{r + z}{2r}},\qquad a_{x} = \frac{a_{u}v + a_{v}u}{\sqrt{u^{2} + v^{2}}} \cos (\varphi ) - a_{\varphi} \sin (\varphi ), $$
    $$a_{v} = \frac{a_{x}x + a_{y}y}{\sqrt{2r(r - z)}} - a_{z}\sqrt{\frac{r - z}{2r}},\qquad a_{y} = \frac{a_{u}v + a_{v}u}{\sqrt{u^{2} + v^{2}}} \sin (\varphi ) + a_{\varphi} \cos (\varphi ), $$
    $$a_{\varphi} = \frac{ - a_{x}y + a_{y}x}{\sqrt{x^{2} + y^{2}}},\qquad a_{z} = \frac{a_{u}u - a_{v}v}{\sqrt{u^{2} + v^{2}}}. $$

    Then:

    $$\operatorname{grad}_{u}\psi = \frac{1}{\sqrt{u^{2} + v^{2}}} \frac{\partial \psi}{\partial u},\qquad \operatorname{grad}_{v}\psi = \frac{1}{\sqrt{u^{2} + v^{2}}} \frac{\partial \psi}{\partial v},\qquad \operatorname{grad}_{\varphi} \psi = \frac{1}{uv}\frac{\partial \psi}{\partial \varphi} $$
    $$\operatorname{div}\mathrm{A} = \frac{1}{\sqrt{u^{2} + v^{2}}} \biggl\{ \frac{1}{u} \frac{\partial}{\partial u}(ua_{u}) + \frac{1}{v}\frac{\partial}{\partial v}(va_{v}) + \sqrt{\frac{1}{u^{2}} + \frac{1}{v^{2}}} \frac{\partial a_{\varphi}}{\partial \varphi} + \frac{ua_{u} + va_{v}}{u^{2} + v^{2}} \biggr\} , $$
    $$\Delta \psi = \frac{1}{u^{2} + v^{2}} \biggl\{ \frac{1}{u}\frac{\partial}{ \partial u} \biggl(u\frac{\partial \psi}{\partial u}\biggr) + \frac{1}{v}\frac{\partial}{\partial v}\biggl(v \frac{\partial \psi}{\partial v}\biggr) + \biggl( \frac{1}{u^{2}} + \frac{1}{v^{2}} \biggr) \frac{\partial^{2}\psi}{ \partial \varphi^{2}} \biggr\} $$
    $$\operatorname{curl}_{u}A = \frac{1}{v\sqrt{u^{2} + v^{2}}} \frac{\partial}{\partial v}(va_{\varphi} ) - \frac{1}{uv}\frac{\partial a_{v}}{\partial \varphi}, $$
    $$\operatorname{curl}_{v}A = \frac{1}{uv}\frac{\partial a_{u}}{\partial \varphi} - \frac{1}{u\sqrt{u^{2} + v^{2}}} \frac{\partial}{\partial u}(ua_{\varphi} ), $$
    $$\operatorname{curl}_{\varphi} A = \frac{1}{\sqrt{u^{2} + v^{2}}} \biggl\{ \biggl( \frac{\partial a_{v}}{\partial u} - \frac{\partial a_{u}}{\partial v} \biggr) + \frac{ua_{v} - va_{u}}{u^{2} + v^{2}} \biggr\} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedykh, P.A. Transformation of solar wind energy into the energy of magnetospheric processes. Acta Geod Geophys 49, 1–15 (2014). https://doi.org/10.1007/s40328-013-0036-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-013-0036-2

Keywords

Navigation