Skip to main content
Log in

Development of cubically convergent iterative derivative free methods for computing multiple roots

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

This research article is dedicated to solving multiple roots of real life problems. In the literature, there are numerous higher-order multiple root algorithms with derivative. But, derivative-free algorithms for multiple roots, on the other hand, are extremely rare. As a result of this, we describe a family of third-order derivative-free algorithms for calculating multiple roots that only require three function evaluations each iteration. The application of new algorithms is validated on Shokley diode and electric circuit problem, Isothermal continuous stirred tank reactor problem, Van der Waals problem and Planck law radiation problem. The presented iterative algorithms are good rivals to the existing algorithms, according to numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Behl, R., Zafar, F., Alshormani, A.S., Junjua, M.U.D., Yasmin, N.: An optimal eighth-order scheme for multiple zeros of unvariate functions. Int. J. Comput. Meth. (2018). https://doi.org/10.1142/S0219876218430028

    Article  MATH  Google Scholar 

  2. Bradie, B.: A Friendly Introduction to Numerical Analysis. Pearson Education Inc., New Delhi, India (2006)

    Google Scholar 

  3. Dong, C.: A family of multipoint iterative functions for finding multiple roots of equations. Int. J. Comput. Math. 21, 363–367 (1987)

    Article  MATH  Google Scholar 

  4. Douglas, J.M.: Process Dynamics and Control. Prentice Hall, Englewood Cliffs, USA (1972)

    Google Scholar 

  5. Geum, Y.H., Kim, Y.I., Neta, B.: A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics. Appl. Math. Comput. 270, 387–400 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hansen, E., Patrick, M.: A family of root finding methods. Numer. Math. 27, 257–269 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  7. Khoury, R.: Douglas Wilhelm Harder, Numerical Methods and Modelling for Engineering. Springer International Publishing, Berlin, Germany (2017)

    Google Scholar 

  8. Kumar, S., Kumar, D., Sharma, J.R., Cesarano, C., Agarwal, P., Chu, Y.M.: An optimal fourth order derivative-free numerical algorithm for multiple roots. Symmetry (2020). https://doi.org/10.3390/sym12061038

    Article  Google Scholar 

  9. Kumar, D., Sharma, J.R., Argyros, I.K.: Optimal one-point iterative function free from derivatives for multiple roots. Mathematics (2020). https://doi.org/10.3390/math8050709

    Article  Google Scholar 

  10. Kumar, D., Sharma, J.R., Cesarano, C.: An efficient class of Traub-Steffensen-type methods for computing multiple zeros. Axioms (2019). https://doi.org/10.3390/axioms8020065

    Article  MATH  Google Scholar 

  11. Li, S., Liao, X., Cheng, L.: A new fourth-order iterative method for finding multiple roots of nonlinear equations. Appl. Math. Comput. 215, 1288–1292 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, S.G., Cheng, L.Z., Neta, B.: Some fourth-order nonlinear solvers with closed formulae for multiple roots. Comput Math. Appl. 59, 126–135 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Neta, B.: New third order nonlinear solvers for multiple roots. App. Math. Comput. 202, 162–170 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Osada, N.: An optimal multiple root-finding method of order three. J. Comput. Appl. Math. 51, 131–133 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schröder, E.: Über unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann. 2, 317–365 (1870)

    Article  MathSciNet  Google Scholar 

  16. Sharma, J.R., Kumar, S., Jäntschi, L.: On a class of optimal fourth order multiple root solvers without using derivatives. Symmetry (2019). https://doi.org/10.3390/sym11121452

    Article  Google Scholar 

  17. Sharma, J.R., Kumar, S., Argyros, I.K.: Development of optimal eighth order derivative-free methods for multiple roots of nonlinear equations. Symmetry (2019). https://doi.org/10.3390/sym11060766

    Article  Google Scholar 

  18. Sharma, J.R., Kumar, S., Jäntschi, L.: On derivative free multiple-root finders with optimal fourth order convergence. Mathematics (2020). https://doi.org/10.3390/math8071096

    Article  Google Scholar 

  19. Sharma, J.R., Sharma, R.: Modified Jarratt method for computing multiple roots. Appl. Math. Comput. 217, 878–881 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sharifi, M., Babajee, D.K.R., Soleymani, F.: Finding the solution of nonlinear equations by a class of optimal methods. Comput. Math. Appl. 63, 764–774 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Soleymani, F., Babajee, D.K.R., Lotfi, T.: On a numerical technique for finding multiple zeros and its dynamics. J. Egypt. Math. Soc. 21, 346–353 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Traub, J.F.: Iterative Methods for the Solution of Equations. Chelsea Publishing Company, New York (1982)

    MATH  Google Scholar 

  23. Victory, H.D., Neta, B.: A higher order method for multiple zeros of nonlinear functions. Int. J. Comput. Math. 12, 329–335 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13, 87–93 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media, Champaign (2003)

    Google Scholar 

  26. Zhou, X., Chen, X., Song, Y.: Constructing higher-order methods for obtaining the multiple roots of nonlinear equations. J. Comput. Appl. Math. 235, 4199–4206 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Kumar, D. & Kumar, R. Development of cubically convergent iterative derivative free methods for computing multiple roots. SeMA 80, 415–423 (2023). https://doi.org/10.1007/s40324-022-00300-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-022-00300-6

Keywords

Mathematics Subject Classification

Navigation