Skip to main content
Log in

Isometries of CAT(0) cube complexes are semi-simple

  • Published:
Annales mathématiques du Québec Aims and scope Submit manuscript

Abstract

We consider an automorphism of an arbitrary CAT(0) cube complex. We study its combinatorial displacement and we show that either the automorphism has a fixed point or it preserves some combinatorial axis. It follows that when a f.g. group contains a distorted cyclic subgroup, it admits no proper action on a discrete space with walls. As an application Baumslag-Solitar groups and Heisenberg groups provide examples of groups having a proper action on measured spaces with walls, but no proper action on a discrete space with wall.

Résumé

Nous considérons un automorphisme d’un complexe cubique CAT(0) général. Nous étudions son déplacement combinatoire, et nous établissons une dichotomie: ou bien l’automorphisme fixe un point, ou bien il préserve un axe combinatoire. Il en résulte qu’un groupe de type fini contenant un sous-groupe cyclique distordu n’agit pas proprement sur un espace à murs discret. Ainsi les groupes de Baumslag–Solitar ou de Heisenberg fournissent des exemples de groupes agissant proprement sur un espace à murs mesurés, mais pas sur un espace à murs discret.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Martin R. Bridson and André Haefliger. Metric spaces of non-positive curvature. Springer-Verlag, Berlin, 1999.

  2. Indira Chatterji and Graham Niblo. From wall spaces to CAT(0) cube complexes. Internat. J. Algebra Comput., 15(5-6):875–885, 2005.

  3. Martin, F. Cherix, P.-A. and Valette, A. Spaces with measured walls, the Haagerup property and property (T). Ergodic Theory Dynam. Systems, 24(6):1895–1908, 2004.

  4. Michael W. Davis. Groups generated by reflections and aspherical manifolds not covered by euclidean space. Ann. of Math. (2), 117(2):293–324, 1983.

  5. S. Gal and T. Januszkiewicz. New a-T-menable HNN-extensions. J. Lie Theory, 13(2):383–385, 2003.

  6. M. Gromov. Hyperbolic groups. In Essays in group theory, volume 8 of Math. Sci. Res. Inst. Publ., pages 75–263. Springer, New York, 1987.

  7. Frédéric Haglund and Frédéric Paulin. Simplicité de groupes d’automorphismes d’espaces à courbure négative. In The Epstein birthday schrift, pages 181–248 (electronic). Geom. Topol., Coventry, 1998.

  8. Gábor Moussong. Hyperbolic Coxeter Groups. PhD thesis, Ohio State University, 1988.

  9. Bogdan Nica. Cubulating spaces with walls. Algebr. Geom. Topol., 4:297–309 (electronic), 2004.

  10. Michah Sageev. Ends of group pairs and non-positively curved cube complexes. Proc. London Math. Soc. (3), 71(3):585–617, 1995.

  11. Jean-Pierre Serre. Trees. Springer-Verlag, Berlin, 1980. Translated from the French by John Stillwell.

  12. Daniel T. Wise. Cubulating small cancellation groups. GAFA, Geom. Funct. Anal., 14(1):150–214, 2004.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Haglund.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haglund, F. Isometries of CAT(0) cube complexes are semi-simple. Ann. Math. Québec 47, 249–261 (2023). https://doi.org/10.1007/s40316-021-00186-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40316-021-00186-2

Keywords

Mathematics Subject Classification

Navigation