Skip to main content
Log in

Specialization method in Krull dimension two and Euler system theory over normal deformation rings

  • Published:
Annales mathématiques du Québec Aims and scope Submit manuscript

Abstract

The aim of this article is to establish the specialization method on characteristic ideals for finitely generated torsion modules over a complete local normal domain R that is module-finite over \({\mathcal {O}}[[x_1,\ldots ,x_d]]\), where \({\mathcal {O}}\) is the ring of integers of a finite extension of the field of p-adic integers \({\mathbb {Q}}_p\). The specialization method is a technique that recovers the information on the characteristic ideal \({\text {char}}_R (M)\) from \({\text {char}}_{R/I}(M/IM)\), where I varies in a certain family of nonzero principal ideals of R. As applications, we prove Euler system bound over Cohen–Macaulay normal domains by combining the main results in Ochiai (Nagoya Math J 218:125–173, 2015) and then we prove one of divisibilities of the Iwasawa main conjecture for two-variable Hida deformations generalizing the main theorem obtained in Ochiai (Compos Math 142:1157–1200, 2006).

Résumé

Le but de cet article est d’établir “la méthode de spécialisation” pour les ideaux caracteristiques des modules de type fini et de torsion sur un anneau intègre local R qui est fini sur \({\mathcal {O}}[[x_1,\ldots ,x_d]]\)\({\mathcal {O}}\) est l’anneau des entiers d’une extension finie de \({\mathbb {Q}}_p\). La méthode de spécialisation est un technique qui nous permet de récupérer l’ideal caracteristique \({\text {char}}_R (M)\) à partir de \(\{ {\text {char}}_{R/I}(M/IM) \}\) quand I varie dans un ensemble de certains ideaux monogènes de R. En appliquant des résultats princiaux de cet article et de l’article précedant Ochiai (2015), on démontre la borne de système d’Euler sur un anneau R de Cohen–Macaulay. Cela implique une démonstration de l’un des deux inclusions de la conjecture principale d’Iwasawa à deux variables pour déformations de Hida, qui est une généralisation du résultat principale de Ochiai (2006).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banerjee, D., Ghate, E., Narasimha Kumer, V.G.: \(\Lambda \)-adic Forms and the Iwasawa Main Conjecture. In: Coates, J., Dalawat, C.S., Saikia, A., Sujatha, R. (eds.) The Iwasawa theory of totally real fields, vol. 12, Lecture Notes Series, International Press, Singapore (2008)

  2. Bourbaki, N.: Eléments de mathématique, Algébre commutative, Chapitres 5 à 7 (1985)

  3. Bruns, W., Herzog, J.: Cohen-Macaulay Rings, vol. 39. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  4. Cohen, I.S.: On the structure and ideal theory of complete local rings. Trans. Am. Math. Soc. 59, 54–106 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  5. Deligne, P.: Valuers de fonctions L et périodes d’integrales; in Automorphic forms, representations, and \(L\)-functions (Part 2). In: Proceedings of Symposium Pure Math., XXXIII, Providence, R.I., Amer. Math. Soc., pp. 313–346 (1979)

  6. Emerton, M., Pollack, R., Weston, T.: Variation of Iwasawa invariants in Hida families. Invent. Math. 163, 523–580 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gersten, S.M.: A short proof of the algebraic Weierstrass preparation theorem. Proc. Am. Math. Soc. 88, 751–752 (1983)

    MathSciNet  MATH  Google Scholar 

  8. Greco, S.: Two theorems on excellent rings. Nagoya Math. J. 60, 139–149 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Greenberg, R.: Iwasawa theory for \(p\)-adic deformations of motives. Proc. Sympos. Pure Math. 55, 193–223 (1994). Part 2

    Article  MathSciNet  MATH  Google Scholar 

  10. Greenberg, R.: Structure of certain Galois cohomology groups. Doc. Math., Extra Volume, pp. 335–391 (2006)

  11. Greenberg, R., Stevens, G.: p-adic L-functions and p-adic periods of modular forms. Invent. Math. 111, 407–447 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hara, T., Ochiai, T.: The cyclotomic Iwasawa main conjecture for Hilbert cuspforms with complex multiplication. To appear in Kyoto. J. Math

  13. Hida, H.: Iwasawa modules attached to congruences of cusp forms. Ann. Sci. Ecole Normal. sup. 19, 231–273 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hida, H.: Galois representations into \(\text{ GL }_{2}({\mathbb{Z}}_p[[X]])\) attached to ordinary cusp forms. Invent. Math. 85, 545–613 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hida, H.: On p-adic Hecke algebras for GL\(_2\) over totally real fields. Ann. Math. 128, 295–384 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hida, H.: Elementary Theory of \(L\)-functions and Eisenstein Series, LMSST 26. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  17. Illusie, L., Laszlo, Y., Orgogozo, F.: Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents. Astérisque No. 363–364 (2014). Société Mathématique de France, Paris, 2014

  18. Kato, K.: Euler systems, Iwasawa theory, and selmer groups. Kodai Math. J. 22, 313–372 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kato, K.: \(p\)-adic Hodge theory and the values of zeta functions of modular forms, Cohomologies \(p\)-adiques et applications arithmetiques III. Astérisque 295, 117–290 (2004)

    MATH  Google Scholar 

  20. Kitagawa, K.: On standard \(p\)-adic \(L\)-functions of families of elliptic cusp forms, \(p\)-adic monodromy and the Birch and Swinnerton-Dyer conjecture. Contemp. Math. 165, Amer. Math. Soc., Providence, RI, pp. 81–110 (1994)

  21. Kunz, E.: Kähler Differentials. Advanced Lectures in Mathematics. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  22. Kurano, K., Shimomoto, K.: An elementary proof of Cohen-Gabber theorem in the equal characteristic \(p>0\) case. to appear in Tohoku Math. J

  23. Matsumura, H.: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics, vol. 8. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  24. Mazur, B., Wiles, A.: On \(p\)-adic analytic families of Galois representations. Compos. Math. 59, 231–264 (1986)

    MathSciNet  MATH  Google Scholar 

  25. Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of Number Fields. Grundlehren der Mathematischen Wissenschaften, vol. 323. Springer, Berlin (2000)

    MATH  Google Scholar 

  26. Ochiai, T.: A generalization of the Coleman map for Hida deformations. Am. J. Math. 125, 849–892 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ochiai, T.: Euler system for Galois deformations. Annales de l’Institut Fourier 55fascicule 1, 113–146 (2005)

  28. Ochiai, T.: On the two-variable Iwasawa main conjecture. Compos. Math. 142, 1157–1200 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ochiai, T.: Iwasawa Theory for nearly ordinary Hida deformations of Hilbert modular forms. Algebra Number Theory Related Topics, pp 301–319 (2010)

  30. Ochiai, T., Prasanna, K.: Two-variable Iwasawa theory for Hida families with complex multiplication. Preprint (2009)

  31. Ochiai, T., Shimomoto, K.: Bertini theorem for normality on local rings in mixed characteristic (applications to characteristic ideals). Nagoya Math. J. 218, 125–173 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Palvannan, B.: Height one specializations of Selmer groups. arXiv:1510.08386

  33. Perrin-Riou, B.: Systèmes d’Euler \(p\)-adiques et théorie d’Iwasawa. Ann. Inst. Fourier 48, 1231–1307 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rubin, K.: Euler Systems. Annals of Math. Studies, vol. 147. Princeton Univ. Press, Princeton (2000)

    Book  MATH  Google Scholar 

  35. Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  36. Skinner, C., Urban, E.: The main conjecture for GL\((2)\). Invent. Math. 195, 1–277 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Swanson, I., Huneke, C.: Integral closure of ideals rings, and modules. London Math. Soc. Lecture Note Ser. 336. Cambridge University Press, Cambridge (2006)

  38. Sweedler, M.E.: When is the tensor product of algebras local? Proc. AMS 48, 8–10 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  39. Trevor, A., Koo, K.: Change of Selmer group for big Galois representations and application to normalization. Doc. Math. 16, 885–899 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuma Shimomoto.

Additional information

This work was partially supported by Grant-in-Aid for Scientific Research (B) (26287005).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochiai, T., Shimomoto, K. Specialization method in Krull dimension two and Euler system theory over normal deformation rings. Ann. Math. Québec 43, 357–409 (2019). https://doi.org/10.1007/s40316-018-0099-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40316-018-0099-0

Keywords

Mathematics Subject Classification

Navigation