Skip to main content
Log in

The Eisenstein cocycle and Gross’s tower of fields conjecture

  • Published:
Annales mathématiques du Québec Aims and scope Submit manuscript

Abstract

This paper is an announcement of the following result, whose proof will be forthcoming. Let F be a totally real number field, and let \(F \subset K \subset L\) be a tower of fields with L / F a finite abelian extension. Let I denote the kernel of the natural projection from \(\mathbf {Z}[\mathrm{Gal}(L/F)]\) to \(\mathbf {Z}[\mathrm{Gal}(K/F)]\). Let \(\Theta \in \mathbf {Z}[\mathrm{Gal}(L/F)]\) denote the Stickelberger element encoding the special values at zero of the partial zeta functions of L / F, taken relative to sets S and T in the usual way. Let r denote the number of places in S that split completely in K. We show that \(\Theta \in I^{r}\), unless K is totally real in which case we obtain \(\Theta \in I^{r-1}\) and \(2\Theta \in I^r\). This proves a conjecture of Gross up to the factor of 2 in the case that K is totally real and \(\#S \ne r\). In this article we sketch the proof in the case that K is totally complex.

Résumé

Ce papier est une annonce du résultat suivant, dont la preuve est imminente. Soit F un corps de nombres totalement réel, et soit \(F \subset K \subset L\) une tour d’extensions, où l’extension L / F est abélienne finie. Soit I le noyau de la projection naturelle de \(\mathbf {Z}[\mathrm{Gal}(L/F)]\) vers \(\mathbf {Z}[\mathrm{Gal}(K/F)]\). Soit \(\Theta \in \mathbf {Z}[\mathrm{Gal}(L/F)]\) l’élément de Stickelberger qui encode les valeurs spéciales en zéro des fonctions zêta partielles de L / F, prise par rapport à des ensembles S et T de places de F de la manière usuelle. Soit r le nombre de places dans S qui sont totalement déployées dans K. Nous démontrons que \(\Theta \in I^r\), à moins que K ne soit totalement réel auquel cas nous obtenons \(\Theta \in I^{r-1}\) et \(2 \Theta \in I^r\). Ceci démontre une conjecture de Gross, à un facteur de 2 près dans le cas où K est totalement réel et \(\#S \ne r\). Dans cet article, nous esquissons une preuve dans le cas où l’extension K est totalement complexe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The conditions on T necessary for the Cassou-Noguès/Deligne–Ribet integrality statement below is that T contains two primes of different residue characteristic, or one place with residue characteristic p that is large enough. Here “large enough” depends on the value k at which \(\Theta \) will be evaluated; for \(k=0\), \(p \ge n+2\) is large enough. We will impose additional conditions on T for the use of Shintani’s method in the next section.

  2. We are grateful to C. Popescu for suggesting that we strengthen our result in this form at the conference.

References

  1. Cassou-Noguès, P.: Valeurs aux entiers négatifs des fonctions zeta et fonctions zeta \(p\)-adiques. Invent. Math. 51, 29–59 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Charollois, P., Dasgupta, S.: Integral Eisenstein cocycles on \({ GL}_n\), I: Sczech’s cocycle and \(p\)-adic \(L\)- functions of Totally Real Fields. Camb. J. Math. 2, 49–90 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Charollois, P., Dasgupta, S., Greenberg, M.: Integral Eisenstein cocycles on \({ GL}_n\), II: Shintani’s method. Commentarii Mathematici Helvetici 90(2), 435–477 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dasgupta, S., Spieß, M.: The Eisenstein cocycle, partial zeta values, and Gross–Stark units. Preprint, available at http://arxiv.org/abs/1411.4025

  5. Deligne, P., Ribet, K.: Values of abelian \(L\)-functions at negative integers over totally real fields. Invent. Math. 59, 227–286 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diaz y Diaz, F., Friedman, E.: Signed fundamental domains for totally real number fields. Proc. Lond. Math. Soc. 104(4), 965–988 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Greither, C., Popescu, C.: An Equivariant Main Conjecture in Iwasawa Theory and Applications. J. Algebr. Geom. 24, 629–692 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gross, B.H.: On the values of abelian \(L\). J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35, 177–197 (1988)

    MathSciNet  MATH  Google Scholar 

  9. Hill, R.: Shintani cocycles on \({\bf GL}_n\). Bull. L.M.S. 39, 993–1004 (2007)

    Article  MATH  Google Scholar 

  10. Hu, S., Solomon, D.: Properties of higher-dimensional Shintani generating functions and cocycles on \({\bf PGL}_3({\bf Q})\). Proc. L.M.S. 82, 64–88 (2001)

  11. Sczech, R.: Eisenstein group cocycle for \({ GL}_n\) and values of \(L\)-functions. Invent. Math. 113, 581–616 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shintani, T.: On the evaluation of zeta functions of totally real fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23, 393–417 (1976)

    MathSciNet  MATH  Google Scholar 

  13. Spieß, M.: On special zeros of \(p\)-adic \(L\)-functions of Hilbert modular forms. Invent. Math. 196, 69–138 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Spieß, M.: Shintani cocycles and the order of vanishing of \(p\)-adic Hecke \(L\)-series at \(s=0\). Math. Ann. 359, 239–265 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Steele, A.: Adic Shintani cocycles. Math. Res. Lett. 21(2), 403–422 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Stevens, G.: Eisenstein, The, measure and real quadratic fields. Théorie des nombres, pp. 887–927 (Québec:de Gruyter, Berlin (1987)) (1989)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samit Dasgupta.

Additional information

Dedicated to Glenn Stevens on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasgupta, S., Spieß, M. The Eisenstein cocycle and Gross’s tower of fields conjecture. Ann. Math. Québec 40, 355–376 (2016). https://doi.org/10.1007/s40316-015-0046-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40316-015-0046-2

Keywords

Mathematics Subject Classification

Navigation