Skip to main content
Log in

Applications of celestial mechanics in natural objects and spacecrafts

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Studies related to Celestial Mechanics started long ago, and it is one of the oldest fields in Astronomy. It started to try to explain the motions of the stars in the sky, in particular the irregular motion of some of those of then, which were really the planets of the Solar System. In the 20th century, with the arrival of the “Space Age”, many applications related to the motion of artificial spacecrafts appeared. This new field was called “Astrodynamics”, to designate the use of Celestial Mechanics in man-made objects. Several aspects, like orbit determination, maneuvers to change the orbit of the spacecraft, etc., are covered by this topic. The present Focus Issue in Celestial Mechanics publishes a list of papers in topics related to applications in Celestial Mechanics to both situations: natural and artificial satellites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Araujo RAN, Winter OC, Prado AFBA, Sukhanov AA (2012) Stability regions around the components of the triple system 2001 SN263. Mon Not R Astron Soc 423(4):3058–3073

    Article  Google Scholar 

  • Belbruno EA, Miller JK (1993) Sun-perturbed Earth-to-Moon transfers with ballistic capture. J Guid Control Dyn 16(4):770–775

    Article  Google Scholar 

  • Bender DF (1962) Optimum coplanar two-impulse transfers between elliptic orbits. Aerospace Eng 22:44–52

  • Brophy JR, Noca M (1998) Eletric propulsion for solar system exploration. J Propuls Power 14:700–707

    Article  Google Scholar 

  • Carvalho JPS, Vilhena de Moraes R, Prado AFBA (2010) Some orbital characteristics of lunar artificial satellites. Celest Mech Dyn Astron 108(4):371–388

    Article  MATH  MathSciNet  Google Scholar 

  • Casalino L, Colasurdo G (2002) Missions to asteroids using solar eletric propusion. Acta Astronaut 50(11):705–711

    Article  Google Scholar 

  • Casalino L, Colasurdo G, Pasttrone D (1999) Optimal low-thrust scape trajectories using gravity assist. J Guid Control Dyn 22(5):637–642

    Article  Google Scholar 

  • Chiaradia APM, Kuga HK, Prado AFBA (2003) Single frequency GPS measurements in real-time artificial satellite orbit determination. Acta Astronaut 53(2):123–133

    Article  Google Scholar 

  • D’Amario LA, Byrnes DV, Stanford RH (1982) Interplanetary trajectory optimization with application to Galileo. J Guid Control Dyn 5(5):465–471

    Article  Google Scholar 

  • DeMelo CF, Macau EEN, Winter OC (2009) Strategy for plane change of Earth orbits using lunar gravity and trajectories derived of family G. Celest Mech Dyn Astron 103:281–299

    Article  MATH  Google Scholar 

  • Domingos RC, de Moraes RV, Prado AFBA (2008) Third-body perturbation in the case of elliptic orbits for the disturbing body. Math Probl Eng 2008:763654-1–763654-14. doi:10.1155/2008/763654

  • Domingos RC, Winter OC, Yokoyama T (2006) Stable satellites around extrasolar giant planets. Mon Not R Astron Soc (Print) 373:1227–1234

    Article  Google Scholar 

  • Dunham D, Davis S (1985) Optimization of a multiple Lunar-Swingby trajectory sequence. J Astronaut Sci 33(3):275–288

    Google Scholar 

  • Dunham D, Davis S (1985) Optimization of a multiple lunar swing by trajectory sequence. J Astronaut Sci 33(3):275–288

    Google Scholar 

  • Eckel KG (1963) Optimum transfer in a central force field with n impulses. Astronaut Acta 9(5/6):302–324

    Google Scholar 

  • Eckel KG (1982) Optimal impulsive transfer with time constraint. Astronaut Acta 9(3):139–146

    Article  MATH  Google Scholar 

  • Farquhar R, Muhonen D, Church LC (1985) Trajectories and orbital maneuvers for the ISEE-3/ICE comet mission. J Astronaut Sci 33(3):235–254

    Google Scholar 

  • Farquhard RW, Dunham DW (1981) A new trajectory concept for exploring the earth’s geomagnetic tail. J Guid Control Dyn 4(2):192–196

    Article  Google Scholar 

  • Flandro G (1966) Fast reconnaissance missions to the outer solar system utilizing energy derived from the gravitational field of Jupiter. Astronaut Acta 12:4

    Google Scholar 

  • Gomes VM, Domingos RC (2015) Studying the lifetime of orbits around Moons in elliptic motion. Mat Aplicada e Comput 2015:1–9 (Cessou em 1997. Cont. ISSN 1807–0302 Comput Appl Math)

    MATH  Google Scholar 

  • Gomes VM, Kuga HK, Chiaradia APM (2007) Real time orbit determination using GPS navigation solution. J Braz Soc Mech Sci Eng XXIX:1–5

    Google Scholar 

  • Gomes VM, Formiga JKS, Moraes RV (2013) Studying close approaches for a cloud of particles considering atmospheric drag. Math Probl Eng (Print) 2013:1–10

    Google Scholar 

  • Gomes Vivian Martins, Piñeros JOM, Prado AFBA, Golebiewska J (2015) Atmospheric close approaches with the Earth considering drag and lift forces. Mat Aplicada e Comput 2015:1–17 (Cessou em 1997. Cont. ISSN 1807-0302 Comput Appl Math)

    MATH  Google Scholar 

  • Gross LR, Prussing JE (1974) Optimal multiple-impulse direct ascent fixed-time rendezvous. AIAA J 12(7):885–889

    Article  MATH  Google Scholar 

  • Hoelker RF, Silber R The bi-elliptic transfer between circular co-planar orbits. Tech Memo, Army Ballistic Missile Agency. Redstone Arsenal, Alabama, pp 2–59

  • Hohmann W (1925) Die Erreichbarkeit der Himmelskörper. Verlag Oldenbourg in München (ISBN: 3-486-23106-5)

  • Hohmann W (1925) Die Erreichbarkeit der Himmelskorper. Oldenbourg, Munich

    Google Scholar 

  • Jezewski DJ, Mittleman D (1982) An analytic approach to two-fixed-impulse transfers between Keplerian orbits. J Guid Control Dyn 5(5):458–464

    Article  MATH  Google Scholar 

  • Jin H, Melton RG (1991) Transfers between circular orbits using fixed impulses. AAS paper 91–161. AAS/AIAA Spaceflight Mechanics Meeting, Houston, TX, Feb 11–13, 1991; published in Advanced in the Astronautical Sciences, vol 75, July 1991, pp 1833–1842

  • Lion PM, Handelsman M (1968) Primer vector on fixed-time impulsive trajectories. AIAA J 6(1):127–132

    Article  MATH  Google Scholar 

  • Macau EEN (2000) Using chaos to guide a spacecraft to the moon. Acta Astronaut Inglaterra 47(12):871–878

    Article  Google Scholar 

  • Macau EEN, Grebogi C (2006) Control of chaos and its relevancy to spacecraft steering. Philos Trans R Soc Math Phys Eng Sci Grã Bretanha 364:2463–2481

    Article  MATH  MathSciNet  Google Scholar 

  • Marsh SM, Howell KC (1988) Double lunar swing by trajectory design, AIAA paper, pp 88–4289

  • Neto EV, Prado AFBA (1998) Time-of-flight analyses for the gravitational capture maneuver. J Guid Control Dyn 21(1):122–126

    Article  MATH  Google Scholar 

  • Pierson BL, Kluever CA (1994) Three-stage approach to optimal low-thrust Earth–Moon trajectories. J Guid Control Dyn 17(6):1275–1282

    Article  Google Scholar 

  • Prado AFBAA (2007) comparison of the â patched-conics approachs and the restricted problem for swing-bys. Adv Space Res 40:113–117

    Article  Google Scholar 

  • Prado AFBA, Broucke R (1995) Effects of atmospheric drag in swing-by trajectory. Acta Astronaut 36(6):285–290

    Article  Google Scholar 

  • Prussing JE (1969) Optimal four-impulse fixed-time rendezvous in the vicinity of a circular orbit. AIAA J 7(5):928–935

    Article  MATH  Google Scholar 

  • Prussing JE (1970) Optimal two- and three-impulse fixed-time rendezvous in the vicinity of a circular orbit. AIAA J 8(7):1221–1228

    Article  MATH  Google Scholar 

  • Prussing JE, Chiu JH (1986) Optimal multiple-impulse time-fixed rendezvous between circular orbits. J Guid Control Dyn 9(1):17–22

    Article  MATH  Google Scholar 

  • Rodler F, Lopez-Morales M, Ribas I (2012) Weighing the non-transiting hot Jupiter Tau BOOb. Astrophys J Lett. doi:10.1088/2041-8205/753/1/L25

  • Roth HL (1967) Minimization of the velocity increment for a bi-elliptic transfer with plane change. Astronaut Acta 13(2):119–130

    MATH  Google Scholar 

  • Salazar FJT, De Melo CF, Macau EEN, Winter OC (2012) Three-body problem, its Lagrangian points and how to exploit them using an alternative transfer to L4 and L5. Celest Mech Dyn Astron 114:201–213

    Article  MathSciNet  Google Scholar 

  • Salazar FJT, Masdemont JJ, Gómez G, Macau EE, Winter OC (2014) Zero, minimum and maximum relative radial acceleration for planar formation flight dynamics near triangular libration points in the Earth–Moon system. Adv Space Res 54:1838–1857

    Article  Google Scholar 

  • Salazar FJT, Winter OC, Macau EE, Masdemont JJ, Gómez G (2015) Natural formations at the Earth–Moon triangular point in perturbed restricted problems. Adv Space Res 56:144–162

    Article  Google Scholar 

  • Salazar FJT, Macau EEN, Winter OC (2015) Chaotic dynamics in a low-energy transfer strategy to the equilateral equilibrium points in the Earth–Moon system. Int J Bifurcat Chaos Appl Sci Eng 25:1550077

    Article  MATH  MathSciNet  Google Scholar 

  • Shternfeld A (1959) Soviet space science. Basic Books Inc, New York, pp 109–111

    Google Scholar 

  • Smith GC (1959) The calculation of minimal orbits. Astronaut Acta 5(5):253–265

    Google Scholar 

  • Sukhanov AA, Prado AFBA (2007) Optimization of transfers under constraints on the thrust direction: I. Cosm Res 45:417–423

    Article  Google Scholar 

  • Sukhanov AA, Prado AFBA (2008) Optimization of transfers under constraints on the thrust direction: II. Cosm Res 46:49–59

    Article  Google Scholar 

  • Ting L (1960) Optimum orbital transfer by several impulses. Astronaut Acta 6(5):256–265

    MATH  Google Scholar 

  • Walton JM, Marchal C, Culp RD (1975) Synthesis of the types of optimal transfers between hyperbolic asymptotes. AIAA J 13(8):980–988

    Article  MATH  Google Scholar 

  • Zee CH (1963) Effect of finite thrusting time in orbital maneuvers. AIAA J 1(1):60–64

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elbert E. N. Macau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, V.M., de Mello, C.F., Macau, E.E.N. et al. Applications of celestial mechanics in natural objects and spacecrafts. Comp. Appl. Math. 36, 1463–1469 (2017). https://doi.org/10.1007/s40314-017-0499-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-017-0499-9

Keywords

Mathematics Subject Classification

Navigation