Skip to main content

Advertisement

Log in

Optimal control of anthropogenic carbon dioxide emissions through technological options: a modeling study

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The anthropogenic emission of carbon dioxide (\(\mathrm{CO}_{2}\)) is the prime culprit for the menace of global warming. To achieve the goal of mitigation of global warming, it is crucial to curb the anthropogenic carbon dioxide emissions. The prime anthropogenic source of \(\mathrm{CO}_{2}\) is fossil fuel burning. In this paper, we propose a nonlinear mathematical model to study the impact of technological options, used for the reduction of \(\mathrm{CO}_{2}\) emissions from fossil fuel burning and industrial processes, on the control of atmospheric \(\mathrm{CO}_2\). In the modeling process, it is assumed that the technological options are implemented to curb the \(\mathrm{CO}_{2}\) emissions from the source at a rate proportional to the anthropogenic \(\mathrm{CO}_{2}\) emissions. Model analysis reveals that the atmospheric level of \(\mathrm{CO}_{2}\) can be effectively reduced by increasing the implementation rate of technological options and their efficiency. The strategies which optimally reduce atmospheric \(\mathrm{CO}_{2}\) levels while minimizing the cost associated with the implementation of technological options are identified using optimal control theory. Numerical simulation has been carried out to illustrate theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Blomen E, Hendriks C, Neele F (2009) Capture technologies: improvements and promising developments. Energy Proced 1:1505–1512

    Article  Google Scholar 

  • Bortz DM, Nelson PW (2004) Sensitivity analysis of a nonlinear lumped parameter model of HIV infection dynamics. Bull Math Biol 66:1009–1026

    Article  MathSciNet  MATH  Google Scholar 

  • Caetano MAL, Gherardi DFM, Yoneyama T (2011) An optimized policy for the reduction of \({\rm CO}_2\) emission in the Brazilian Legal Amazon. Ecol Model 222:2835–2840

    Article  Google Scholar 

  • Damen K, Van Troost M, Faaij A, Turkenburg W (2006) A comparison of electricity and hydrogen production systems with \({\rm CO}_{2}\) capture and storage. Part A: review and selection of promising conversion and capture technologies. Prog Energy Combust Sci 32:215–246

    Article  Google Scholar 

  • Dubey B, Sharma S, Sinha P, Shukla JB (2009) Modelling the depletion of forestry resources by population and population pressure augmented industrialization. Appl Math Model 33:3002–3014

    Article  MathSciNet  MATH  Google Scholar 

  • EDGAR (2014) \({\rm CO}_{2}\) time series 1990–2011 per capita for world countries. http://edgar.jrc.ec.europa.eu/overview.php?v=CO2ts_pc1990-2011. Accessed 11 Nov 2014

  • El-Fadel M, Chedid R, Zeinati M, Hmaidan W (2003) Mitigating energy-related GHG emissions through renewable energy. Renew Energy 28:1257–1276

    Article  Google Scholar 

  • FAO (2010) Global forest resources assessment 2010: main report, FAO forestry paper 163. Food and Agriculture Organization of the United Nations, Rome. ISBN 978-92-5-106654-6

  • Figueroa JD, Fout T, Plasynski S, McIlvried H, Srivastava RD (2008) Advances in \({\rm CO}_{2}\) capture technology—the U.S. Department of Energy’s Carbon Sequestration Program. Int J Greenh Gas Control 2:9–20

  • Fleming WH, Rishel RW (1975) Deterministic and stochastic optimal control. Springer, New York

    Book  MATH  Google Scholar 

  • Freedman HI, So JWH (1985) Global stability and persistence of simple food chains. Math Biosci 76:6986

    Article  MathSciNet  MATH  Google Scholar 

  • Gibbins J, Chalmers H (2008) Carbon capture and storage. Energy Policy 36:4317–4322

    Article  Google Scholar 

  • Grass D, Caulkins JP, Feichtinger G, Tragler G, Behrens DA (2008) Optimal control of nonlinear processes: with applications in drugs, corruption, and terror. Springer, Berlin

    Book  MATH  Google Scholar 

  • Haines A, Kovats RS, Campbell-Lendrum D, Corvalan C (2006) Climate change and human health: impacts, vulnerability, and mitigation. Lancet 367:2101–2109

    Article  Google Scholar 

  • Hale JK (1969) Ordinary differential equations. Wiley-Interscience, New York

    MATH  Google Scholar 

  • Hartwick JM (2005) Deforestation and population increase. In: Institutions, sustainability, and natural resources: institutions for sustainable forest management, chapter 8. Springer, Berlin, pp 155–191

  • Hasanbeigi A, Arens M, Price L (2014) Alternative emerging ironmaking technologies for energy-efficiency and carbon dioxide emissions reduction: a technical review. Renew Sust Energ Rev 33:645–658

    Article  Google Scholar 

  • Ichikawa A (2004) Impacts and risks of global warming. In: Ichikawa A (ed) Global warming—the research challenges. Springer, Berlin, pp 85–114

    Chapter  Google Scholar 

  • International Energy Agency (2007) Tracking industrial energy efficiency and \({\rm CO}_{2}\) emissions. http://www.iea.org/publications/freepublications/publication/tracking_emissions.pdf. Accessed 11 Nov 2014

  • International Energy Agency (2013) Redrawing the energy climate map: world energy outlook special report 2013. http://www.iea.org/publications/freepublications/publication/WEO_RedrawingEnergyClimateMap.pdf. Accessed 11 Nov 2014

  • International Energy Outlook (2013) U.S. Energy Information Administration. http://www.eia.gov/forecasts/ieo/. Accessed 11 Nov 2014

  • IPCC (2005) IPCC special report on carbon dioxide capture and storage. In: Metz B, Davidson O, de Coninck HC, Loos M, Meyer LA (eds) Prepared by working group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Jacobson MZ (2005) Correction to “control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming”. J Geophys Res 110:D14105 (1–5)

  • Jansen D, Dijkstra JW, Van den Brink RW, Peters TA, Stange M, Bredesen R, Goldbach A, Xu HY, Gottschalk A, Doukelis A (2009) Hydrogen membrane reactors for \({\rm CO}_{2}\) capture. Energy Proced 1:253–260

    Article  Google Scholar 

  • Li JR, Ma Y, McCarthy MC, Sculley J, Yu J, Jeong HK, Balbuena PB, Zhou HC (2011) Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord Chem Rev 255:1791–1823

    Article  Google Scholar 

  • Lonngren KE, Bai EW (2008) On the global warming problem due to carbon dioxide. Energy Policy 36:1567–1568

    Article  Google Scholar 

  • Lukes DL (1982) Differential equations: classical to controlled. In: Mathematics in science and engineering, vol 162. Academic Press, New York

  • McMichael AJ, Woodruff RE, Hales S (2006) Climate change and human health: present and future risks. Lancet 367:859–869

    Article  Google Scholar 

  • Misra AK, Lata K (2013) Modeling the effect of time delay on the conservation of forestry biomass. Chaos Soliton Fract 46:1–11

    Article  MATH  Google Scholar 

  • Misra AK, Verma M (2013) A mathematical model to study the dynamics of carbon dioxide gas in the atmosphere. Appl Math Comput 219:8595–8609

    Article  MathSciNet  MATH  Google Scholar 

  • Misra AK, Verma M (2014) Modeling the impact of mitigation options on methane abatement from rice fields. Mitig Adapt Strateg Glob Change 19:927–945

    Article  Google Scholar 

  • Misra AK, Verma M (2015) Impact of environmental education on mitigation of carbon dioxide emissions: a modelling study. Int J Glob Warm 7:466–486

    Article  Google Scholar 

  • Newell ND, Marcus L (1987) Carbon dioxide and people. Palaios 2:101–103

    Article  Google Scholar 

  • Nikol’skii MS (2010) A controlled model of carbon circulation between the atmosphere and the ocean. Comput Math Model 21:414–424

    Article  MathSciNet  MATH  Google Scholar 

  • NOAA (2014a) Trends in atmospheric carbon dioxide. http://www.esrl.noaa.gov/gmd/ccgg/trends/. Accessed 11 Nov 2014

  • NOAA (2014b) Atmospheric \({\rm CO} _{2}\) Mauna Loa observatory (Scripps/NOAA/ ESRL) monthly mean \({\rm CO} _{2}\) concentrations (ppm) since March 1958. http://co2now.org/Current-CO2/CO2-Now/noaa-mauna-loa-co2-data.html. Accessed 11 Nov 2014

  • Onozaki K (2009) Population is a critical factor for global carbon dioxide increase. J Health Sci 55:125–127

    Article  Google Scholar 

  • Pires JCM, Martins FG, Alvim-Ferraz MCM, Simes M (2011) Recent developments on carbon capture and storage: an overview. Chem Eng Res Des 89:1446–1460

    Article  Google Scholar 

  • Pires JCM, Alvim-Ferraz MCM, Martins FG, Simoes M (2012) Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sust Energ Rev 16:3043–3053

    Article  Google Scholar 

  • Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF (1962) The mathematical theory of optimal processes. Interscience Publishers/Wiley, New York

    Google Scholar 

  • Scholes CA, Ho MT, Aguiar AA, Wiley DE, Stevens GW, Kentish SE (2014) Membrane gas separation processes for \({\rm CO}_{2}\) capture from cement kiln flue gas. Int J Greenh Gas Control 24:78–86

    Article  Google Scholar 

  • Shukla JB, Dubey B (1997) Modelling the depletion and conservation of forestry resources: effects of population and pollution. J Math Biol 36:71–94

    Article  MathSciNet  MATH  Google Scholar 

  • Shukla JB, Lata K, Misra AK (2011) Modeling the depletion of renewable resource by population and industrialization: effect of technology on its conservation. Nat Resour Model 24(2):242–267

    Article  MathSciNet  MATH  Google Scholar 

  • Shukla JB, Chauhan MS, Sundar S, Naresh R (2015) Removal of carbon dioxide from the atmosphere to reduce global warming: a modeling study. Int J Glob Warm Gases 7:270–292

    Article  Google Scholar 

  • Singh UB, Ahluwalia AS (2013) Microalgae: a promising tool for carbon sequestration. Mitig Adapt Strateg Glob Change 18:73–95

    Article  Google Scholar 

  • Tennakone K (1990) Stability of the biomass-carbon dioxide equilibrium in the atmosphere: mathematical model. Appl Math Comput 35:125–130

    Article  MathSciNet  MATH  Google Scholar 

  • UNPD (2012) United nations population division, World population prospects: the 2012 revision, total population both sexes. http://esa.un.org/wpp/Excel-Data/population.htm. Accessed 11 Nov 2014

  • Wang B, Li Y, Wu N, Lan CQ (2008) \({\rm CO}_{2}\) bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718

    Article  Google Scholar 

  • Wang L, Yang Y, Shen W, Kong X, Li P, Yu J, Rodrigues AE (2013) Experimental evaluation of adsorption technology for \({\rm CO}_{2}\) capture from flue gas in an existing coal-fired power plant. Chem Eng Sci 101:615–619

    Article  Google Scholar 

  • Wee JH (2013) A review on carbon dioxide capture and storage technology using coal fly ash. Appl Energy 106:143–151

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the handling editor and both the referees for their comments and useful suggestions that improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Misra.

Additional information

Communicated by Geraldo Nunes Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, M., Misra, A.K. Optimal control of anthropogenic carbon dioxide emissions through technological options: a modeling study. Comp. Appl. Math. 37, 605–626 (2018). https://doi.org/10.1007/s40314-016-0364-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-016-0364-2

Keywords

Mathematics Subject Classification

Navigation