Skip to main content
Log in

Molecular Diagnosis of Inherited Cardiac Diseases in the Era of Next-Generation Sequencing: A Single Center’s Experience Over 5 Years

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background and objective

Molecular diagnosis in inherited cardiac diseases is challenging because of the significant genetic and clinical heterogeneity. We present a detailed molecular investigation of a cohort of 4185 patients with referrals for inherited cardiac diseases.

Methods

Patients suffering from cardiomyopathies (3235 probands), arrhythmia syndromes (760 probands), or unexplained sudden cardiac arrest (190 cases) were analyzed using a next-generation sequencing (NGS) workflow based on a panel of 105 genes involved in sudden cardiac death.

Results

(Likely) pathogenic variations were identified for approximately 30% of the cohort. Pathogenic copy number variations (CNVs) were detected in approximately 3.1% of patients for whom a (likely) pathogenic variation were identified. A (likely) pathogenic variation was also detected for 21.1% of patients who died from sudden cardiac death. Unexpected variants, including incidental findings, were present for 28 cases. Pathogenic variations were mainly observed in genes with definitive evidence of disease causation.

Conclusions

Our study, which comprises over than 4000 probands, is one of most important cohorts reported in inherited cardiac diseases. The global mutation detection rate would be significantly increased by determining the putative pathogenicity of the large number of variants of uncertain significance. Identification of "unexpected" variants also showed the clinical utility of genetic testing in inherited cardiac diseases as they can redirect clinical management and medical resources toward a meaningful precision medicine. In cases with negative result, a WGS approach could be considered, but would probably have a limited impact on mutation detection rate as (likely) pathogenic variations were essentially clustered in genes with strong evidence of disease causation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Israel CW. Mechanisms of sudden cardiac death. Indian Heart J. 2014; 66(Suppl 1):S10–7. [PubMed: 24568819]

  2. Müller D, Agrawal R, Arntz HR. How sudden is sudden cardiac death ? Circulation. 2006;114:1146–50 ([PubMed: 16952983]).

    Article  PubMed  Google Scholar 

  3. Martens E, Sinner MF, Siebermair J, Raufhake C, Beckmann BM, Veith S, et al. Incidence of sudden cardiac death in Germany: results from an emergency medical service registry in Lower Saxony. Europace. 2014;16:1752–8 ([PubMed: 25061228]).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Priori SG, Aliot E, Blomstrom-Lundqvist C, Bossaert L, Breithardt G, Brugada P, et al. Task force on sudden cardiac death of the European Society of Cardiology. Eur Heart J. 2001;22:1374–450 ([PubMed: 11482917]).

    Article  CAS  PubMed  Google Scholar 

  5. Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006;113:1807–16 ([PubMed: 16567565]).

    Article  PubMed  Google Scholar 

  6. Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE. Prevalence of hypertrophic cardiomyopathy in a general population of young adults echocardiographic analysis of 4111 subjects in the CARDIA study. Circulation. 1995;92:785–9 ([PubMed: 7641357]).

    Article  CAS  PubMed  Google Scholar 

  7. Taylor MR, Carniel E, Mestroni L. Cardiomyopathy, familial dilated. Orphanet J Rare Dis. 2006;1:27 ([PubMed: 16839424]).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol. 2013;10:531–47 ([PubMed: 23900355]).

    Article  CAS  PubMed  Google Scholar 

  9. Semsarian C, Ingles J, Maron MS, Maron BJ. New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2015;65:1249–54 ([PubMed: 25814232]).

    Article  PubMed  Google Scholar 

  10. Haas J, Frese KS, Peil B, Kloos W, Keller A, Nietsch R, et al. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J. 2015;36:1123–35 ([PubMed: 25163546]).

    Article  CAS  PubMed  Google Scholar 

  11. Teekakirikul P, Kelly MA, Rehm HL, Lakdawala NK, Funke BH. Inherited cardiomyopathies: molecular genetics and clinical genetic testing in the postgenomic era. J Mol Diag. 2013;15:158–70 ([PubMed: 23274168]).

    Article  Google Scholar 

  12. Wilcox JE, Hershberger RE. Genetic cardiomyopathies. Curr Opin Cardiol. 2018;33:354–62 ([PubMed: 29561320]).

    Article  PubMed  Google Scholar 

  13. Kline J, Costantini O. Inherited cardiac arrhythmias and channelopathies. Med Clin North Am. 2019;103:809–20 ([PubMed: 31378327]).

    Article  PubMed  Google Scholar 

  14. Singh M, Morin DP, Lin MS. Sudden cardiac death in Long QT syndrome (LQTS), Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia (CPVT). Prog Cardiovasc Dis. 2019;62:227–34 ([PubMed: 31078562]).

    Article  PubMed  Google Scholar 

  15. Campuzano O, Sarquella-Brugada G, Brugada R, Brugada J. Genetics of channelopathies associated with sudden cardiac death. Glob Cardiol Sci Pract. 2015;2015:39 ([PubMed: 26566530]).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chanavat V, Janin A, Millat G. A fast and cost-effective molecular diagnostic tool for genetic diseases involved in sudden cardiac death. Clin Chim Acta. 2016;453:80–5 ([PubMed: 26688388]).

    Article  CAS  PubMed  Google Scholar 

  17. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24 ([PubMed: 25741868]).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Amendola LM, Jarvik GP, Leo MC, McLaughlin HM, Akkari Y, Amaral MD, et al. Performance of ACMG-AMP variant-interpretation guidelines among nine laboratories in the clinical sequencing exploratory research consortium. Am J Hum Genet. 2016;99:247 ([PubMed: 27392081]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Akhtar M, Elliott P. The genetics of hypertrophic cardiomyopathy. Glob Cardiol Sci Pract. 2018;2018:36 ([PubMed: 30393648]).

    PubMed  PubMed Central  Google Scholar 

  20. Ingles J, Goldstein J, Thaxton C, Caleshu C, Corty EW, Crowley SB, et al. Evaluating the clinical validity of hypertrophic cardiomyopathy genes. Circul Genomic Precis Med. 2019;12:e002460 ([PubMed: 30681346]).

    Article  CAS  Google Scholar 

  21. Hermida A, Fressart V, Hidden-Lucet F, Donal E, Probst V, Deharo JC, et al. High risk of heart failure associated with desmoglein-2 mutations compared to plakophilin-2 mutations in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Eur J Heart Fail. 2019;21:792–800 ([PubMed: 30790397]).

    Article  CAS  PubMed  Google Scholar 

  22. Ware JS, Cook SA. Role of titin in cardiomyopathy: from DNA variants to patient stratification. Nat Rev Cardiol. 2018;15:241–52 ([PubMed: 29238064]).

    Article  CAS  PubMed  Google Scholar 

  23. Zaunbrecher RJ, Abel AN, Beussman K, Leonard A, von Frieling-Salewsky M, Fields PA, et al. Cronos titin is expressed in human cardiomyocytes and necessary for normal sarcomere function. Circulation. 2019;140:1647–60 ([PubMed: 31587567]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Janin A, N’Guyen K, Habib G, Dauphin C, Chanavat V, Bouvagnet P, et al. Truncating mutations on myofibrillar myopathies causing genes as prevalent molecular explanations on patients with dilated cardiomyopathy. Clin Genet. 2017;92:616–23 ([PubMed: 28436997]).

    Article  CAS  PubMed  Google Scholar 

  25. Gaertner A, Klauke B, Felski E, Kassner A, Brodehl A, Gerdes D, et al. Cardiomyopathy-associated mutations in the RS domain affect nuclear localization of RBM20. Hum Mutat. 2020;41:1931–43 ([PubMed: 32840935]).

    Article  CAS  PubMed  Google Scholar 

  26. McNair WP, Sinagra G, Taylor MR, Di Lenarda A, Ferguson DA, Salcedo EE, et al, Familial Cardiomyopathy Registry Research Group. SCN5A mutations associate with arrhythmic dilated cardiomyopathy and commonly localize to the voltage-sensing mechanism. J Am Coll Cardiol 2011; 57:2160-8 [PubMed: 21596231].

  27. Bär H, Goudeau B, Wälde S, Casteras-Simon M, Mücke N, Shatunov A, et al. Conspicuous involvement of desmin tail mutations in diverse cardiac and skeletal myopathies. Hum Mutat. 2007;28:374–86 ([PubMed: 17221859]).

    Article  PubMed  Google Scholar 

  28. Kampourakis T, Ponnam S, Irving M. Hypertrophic cardiomyopathy mutation R58Q in the myosin regulatory light chain perturbs thick filament-based regulation in cardiac muscle. J Mol Cell Cardiol. 2018;117:72–81 ([PubMed: 29452157]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Monserrat L, Gimeno-Blanes JR, Marín F, Hermida-Prieto M, García-Honrubia A, Pérez I, et al. Prevalence of fabry disease in a cohort of 508 unrelated patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2007;50:2399–403 ([PubMed: 18154965]).

    Article  PubMed  Google Scholar 

  30. Rowczenio D, Quarta CC, Fontana M, Whelan CJ, Martinez-Naharro A, Trojer H, et al. Analysis of the TTR gene in the investigation of amyloidosis: a 25-year single UK center experience. Hum Mutat. 2019;40:90–6 ([PubMed: 30328212]).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang J, Shen J, Cheng R, Ni C, Liang J, Li M. Identification of a PTPN11 hot spot mutation in a child with atypical LEOPARD syndrome. Mol Med Rep. 2016;14:2639–43 ([PubMed: 27484170]).

    Article  CAS  PubMed  Google Scholar 

  32. Li S, Zhang C, Liu N, Bai H, Hou C, Song L, et al. Titin-truncating variants are associated with heart failure events in patients with left ventricular non-compaction cardiomyopathy. Clin Cardiol. 2019;42:530–5 ([PubMed: 30851055]).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Richard P, Ader F, Roux M, Donal E, Eicher JC, Aoutil N, et al. Targeted panel sequencing in adult patients with left ventricular non-compaction reveals a large genetic heterogeneity. Clin Genet. 2019;95:356–67 ([PubMed: 30471092]).

    Article  CAS  PubMed  Google Scholar 

  34. Milano A, Vermeer AM, Lodder EM, Barc J, Verkerk AO, Postma AV, et al. HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy. J Am Coll Cardiol. 2014;64:745–56 ([PubMed: 25145517]).

    Article  CAS  PubMed  Google Scholar 

  35. Millat G, Janin A, de Tauriac O, Roux A, Dauphin C. HCN4 mutation as a molecular explanation on patients with bradycardia and non-compaction cardiomyopathy. Eur J Med Genet. 2015;58:439–42 ([PubMed: 26206080]).

    Article  PubMed  Google Scholar 

  36. Kalayinia S, Ghasemi S, Mahdieh N. A comprehensive in silico analysis, distribution and frequency of human Nkx2-5 mutations; a critical gene in congenital heart disease. J Cardiovas Thorac Res. 2019;11:287–99 ([PubMed: 31824610]).

    Article  Google Scholar 

  37. Kirk EP, Sunde M, Costa MW, Rankin SA, Wolstein O, Leticia Castro M, et al. Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am J Human Genet. 2007;81:280–91 ([PubMed: 17668378]).

    Article  CAS  Google Scholar 

  38. Finsterer J, Stöllberger C. Left ventricular noncompaction syndrome: genetic insights and therapeutic perspectives. Curr Cardiol Rep. 2020;22:84 ([PubMed: 32648009]).

    Article  PubMed  Google Scholar 

  39. Ader F, De Groote P, Réant P, Rooryck-Thambo C, Dupin-Deguine D, Rambaud C, et al. FLNC pathogenic variants in patients with cardiomyopathies: prevalence and genotype-phenotype correlations. Clin Genet. 2019;96:317–29 ([PubMed: 31245841]).

    Article  CAS  PubMed  Google Scholar 

  40. Brodehl A, Ferrier RA, Hamilton SJ, Greenway SC, Brundler MA, Yu W, et al. Mutations in FLNC are associated with familial restrictive cardiomyopathy. Hum Mutat. 2016;37:269–79 ([PubMed: 26666891]).

    Article  CAS  PubMed  Google Scholar 

  41. Tucker NR, McLellan MA, Hu D, Ye J, Parsons VA, Mills RW, et al. Novel mutation in FLNC (Filamin C) causes familial restrictive cardiomyopathy. Circ Cardiovasc Genet. 2017;10:e001780 ([PubMed: 29212899]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schubert J, Tariq M, Geddes G, Kindel S, Miller EM, Ware SM. Novel pathogenic variants in filamin C identified in pediatric restrictive cardiomyopathy. Hum Mutat. 2018;39:2083–9 ([PubMed: 30260051]).

    Article  CAS  PubMed  Google Scholar 

  43. Austin KM, Trembley MA, Chandler SF, Sanders SP, Saffitz JE, Abrams DJ, et al. Molecular mechanisms of arrhythmogenic cardiomyopathy. Nat Rev Cardiol. 2019;16:519–37 ([PubMed: 31028357]).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Eur Heart J. 2010;31:806–14 ([PubMed: 20172912]).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Haghigh K, Kolokathis F, Pater L, Lynch RA, Asahi M, Gramolini AO, et al. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J Clin Invest. 2003;111:869–76 ([PubMed: 12639993]).

    Article  Google Scholar 

  46. Adler A, Novelli V, Amin AS, Abiusi E, Care M, Nannenberg EA, et al. An international, multicentered, evidence-based reappraisal of genes reported to cause congenital long QT syndrome. Circulation. 2020;141:418–28 ([PubMed: 31983240]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Letsas KP, Prappa E, Bazoukis G, Lioni L, Pantou MP, Gourzi P, et al. A novel variant of RyR2 gene in a family misdiagnosed as congenital long QT syndrome: the importance of genetic testing. J Electrocardiol. 2020;60:8–11 ([PubMed: 32179276]).

    Article  PubMed  Google Scholar 

  48. McKenna WJ, Judge DP. Epidemiology of the inherited cardiomyopathies. Nat Rev Cardiol. 2021;18:22–36 ([PubMed: 32895535]).

    Article  PubMed  Google Scholar 

  49. Campuzano O, Sarquella-Brugada G, Fernandez-Falgueras A, Cesar S, Coll M, Mates J, et al. Genetic interpretation and clinical translation of minor genes related to Brugada syndrome. Hum Mutat. 2019;40:749–64 ([PubMed: 30821013]).

    Article  PubMed  Google Scholar 

  50. Asatryan B, Medeiros-Domingo A. Molecular and genetic insights into progressive cardiac conduction disease. Europace. 2019;21:1145–58 ([PubMed: 31087102]).

    Article  PubMed  Google Scholar 

  51. Isbister JC, Nowak N, Butters A, Yeates L, Gray B, Sy RW, et al. Concealed cardiomyopathy" as a cause of previously unexplained sudden cardiac arrest. Int J Cardiol. 2020;S0167–5273(20):33812–22 ([PubMed: 32931854]).

    Google Scholar 

  52. Mates J, Mademont-Soler I, Del Olmo B, Ferrer-Costa C, Coll M, Pérez-Serra A, et al. Role of copy number variants in sudden cardiac death and related diseases: genetic analysis and translation into clinical practice. Eur J Hum Genet. 2018;26:1014–25 ([PubMed: 29511324]).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chanavat V, Seronde MF, Bouvagnet P, Chevalier P, Rousson R, Millat G. Molecular characterization of a large MYBPC3 rearrangement in a cohort of 100 unrelated patients with hypertrophic cardiomyopathy. Eur J Med Genet. 2012;55:163–6 ([PubMed: 22314326]).

    Article  CAS  PubMed  Google Scholar 

  54. Ramond F, Janin A, Di Filippo S, Chanavat V, Chalabreysse L, Roux-Buisson N, et al. Homozygous PKP2 deletion associated with neonatal left ventricle noncompaction. Clin Genet. 2017;91:126–30 ([PubMed: 27030002]).

    Article  CAS  PubMed  Google Scholar 

  55. Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med. 2016;9:249–55 ([PubMed: 27854360]).

    Google Scholar 

  56. Janin A, Bessière F, Chauveau S, Chevalier P, Millat G. First identification of homozygous truncating CSRP3 variants in two unrelated cases with hypertrophic cardiomyopathy. Gene. 2018;676:110–6 ([PubMed: 30012424]).

    Article  CAS  PubMed  Google Scholar 

  57. Kozek KA, Glazer AM, Ng CA, Blackwell D, Egly CL, Vanags LR, et al. High-throughput discovery of trafficking-deficient variants in the cardiac potassium channel KV11.1. Heart Rhythm 2020; S1547-5271(20)30542-7 [PubMed: 32522694].

  58. Mattivi CL, Bos JM, Bagnall RD, Nowak N, Giudicessi JR, Ommen SR, et al. Clinical utility of a phenotype enhanced MYH7-specific variant classification framework in hypertrophic cardiomyopathy genetic testing. Circ Genom Precis Med. 2020;13:453–9 ([PubMed: 32894683]).

    Article  CAS  PubMed  Google Scholar 

  59. Millat G, Lafont E, Nony S, Rouvet I, Bozon D. Functional characterization of putative novel splicing mutations in the cardiomyopathy-causing genes. DNA Cell Biol. 2015;34:489–96 ([PubMed: 25849606]).

    Article  CAS  PubMed  Google Scholar 

  60. Pettinato AM, Ladha FA, Mellert DJ, Legere N, Cohn R, Romano R, et al. Development of a cardiac sarcomere functional genomics platform to enable scalable interrogation of human TNNT2 variants. Circulation. 2020;142:2262–75 ([PubMed: 33025817]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vanoye CG, Desai RR, Fabre KL, Gallagher SL, Potet F, De Keyser JM, et al. High-throughput functional evaluation of KCNQ1 decrypts variants of unknown significance. Circ Genom Precis Med. 2018;11:e002345 ([PubMed: 30571187]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Janin A, Chanavat V, Rollat-Farnier PA, Bardel C, Nguyen K, Chevalier P, et al. Whole MYBPC3 NGS sequencing as a molecular strategy to improve the efficiency of molecular diagnosis of patients with hypertrophic cardiomyopathy. Hum Mutat. 2020;41:465–75 ([PubMed: 31730716]).

    Article  CAS  PubMed  Google Scholar 

  63. Kapplinger JD, Tester DJ, Salisbury BA, Carr JL, Harris-Kerr C, Pollevick GD, et al. Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the FAMILION long QT syndrome genetic test. Heart Rhythm. 2009;6(9):1297–303 ([PubMed: 19716085]).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hathaway J, Heliö K, Saarinen I, Tallila J, Seppälä EH, Tuupanen S, et al. Diagnostic yield of genetic testing in a heterogeneous cohort of 1376 HCM patients. BMC Cardiovasc Disord. 2021;21(1):126 ([PubMed: 33673806]).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the patients and families involved, as well as to all their colleagues who provided them with biological samples and with invaluable clinical information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Millat.

Ethics declarations

Funding

Not applicable.

Conflicts of interest

AJ, LJ, CC, AD, PC, and GM are employees of Hospices Civils de Lyon (France). None of the authors have potential conflicts of interest to declare.

Ethics approval

Not applicable.

Author contributions

AJ, LJ, CC, and GM are molecular biologists involved in all molecular diagnosis steps (from blood sample to clinical reports). AD and PC are cardiologists and coordinators of the National Reference Center of inherited cardiac diseases in Lyon.

Grant information

Molecular diagnosis was supported by Hospices Civils de Lyon (France).

Informed consent

The study was conducted in accordance with the principles of the Declaration of Helsinki and informed consent was obtained for all cases.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2619 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janin, A., Januel, L., Cazeneuve, C. et al. Molecular Diagnosis of Inherited Cardiac Diseases in the Era of Next-Generation Sequencing: A Single Center’s Experience Over 5 Years. Mol Diagn Ther 25, 373–385 (2021). https://doi.org/10.1007/s40291-021-00530-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-021-00530-w

Navigation