Skip to main content
Log in

Motor Competence Levels and Developmental Delay in Early Childhood: A Multicenter Cross-Sectional Study Conducted in the USA

  • Original Research Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

A Correction to this article was published on 23 July 2019

This article has been updated

Abstract

Background and Objectives

Developmental delay in motor competence may limit a child’s ability to successfully participate in structured and informal learning/social opportunities that are critical to holistic development. Current motor competence levels in the USA are relatively unknown. The purposes of this study were to explore motor competence levels of US children aged 3–6 years, report percentages of children demonstrating developmental delay, and investigate both within and across childcare site predictors of motor competence, including sex, race, geographic region, socioeconomic status, and body mass index percentile classification. Potential implications from results could lead to a greater awareness of the number of children with developmental delay, the impetus for evidence-based interventions, and the creation of consistent qualification standards for all children so that those who need services are not missed.

Methods

Participants included children (N = 580, 296 girls) aged 3–6 years (Mage = 4.97, standard deviation = 0.75) from a multi-state sample. Motor competence was assessed using the Test of Gross Motor Development, Second Edition and the 25th and 5th percentiles were identified as developmental delay-related cutoffs.

Results

For both Test of Gross Motor Development, Second Edition subscales, approximately 77% of the entire sample qualified as at risk for developmental delay (≤ 25th percentile), while 30%  of the entire sample were at or below 5th percentile. All groups (e.g., sex, race, socioeconomic status) were prone to developmental delay. Raw object control scores differed by sex.

Conclusions

Developmental delay in motor competence is an emerging epidemic that needs to be systematically acknowledged and addressed in the USA. By shifting norms based upon current data, there may be a lower standard of “typical development” that may have profound effects on factors that support long-term health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 23 July 2019

    Page 1, Abstract, Results, sentence 1: The following sentence, which previously read:

References

  1. Pate R, Pfeiffer K, Trost S, Ziegler P, Dowda M. Physical activity among children attending preschools. Pediatrics. 2004;114(5):1258–63. https://doi.org/10.1542/peds.2003-1088-L.

    Article  PubMed  Google Scholar 

  2. Piercy K, Troiano R, Ballard R, Carlson S, Fulton J, Galuska D, et al. The physical activity guidelines for Americans. JAMA. 2018;320(19):2020–8. https://doi.org/10.1001/jama.2018.14854.

    Article  PubMed  Google Scholar 

  3. Troiano R, Berrigan D, Dodd K, Masse L, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8. https://doi.org/10.1249/mss.0b013e31815a51b3.

    Article  PubMed  Google Scholar 

  4. Hales C, Carroll M, Fryar C, Ogden C. Prevalence of obesity among adults and youth: United States, 2015–2016. NCHS Data Brief. 2017;288:1–8.

    Google Scholar 

  5. Sekhobo J, Edmunds L, Whaley S, Koleilat M. Obesity prevalence among low-income, preschool-aged children: New York City and Los Angeles County, 2003–2011. MMWR Morb Mortal Wkly Rep. 2013;62(2):17–22.

    PubMed Central  Google Scholar 

  6. Dollman J, Norton K, Norton L. Evidence for secular trends in children’s physical activity behaviour. Br J Sports Med. 2005;39(12):892–7. https://doi.org/10.1136/bjsm.2004.016675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tomkinson G, Olds T. Secular changes in pediatric aerobic fitness test performance: the global picture. Med Sport Sci. 2007;50:46–66. https://doi.org/10.1159/000101075.

    Article  PubMed  Google Scholar 

  8. Bethell C, Simpson L, Stumbo S, Carle AC, Gombojav N. National, state, and local disparities in childhood obesity. Health Affairs (Project Hope). 2010;29(3):347–56. https://doi.org/10.1377/hlthaff.2009.0762.

    Article  Google Scholar 

  9. Nelson D, Gerras J, McGlumphy K, Shaver E, Gill A, Kanneganti K, et al. Racial discrimination and low household education predict higher body mass index in African American youth. Child Obes. 2018;14(2):114–21. https://doi.org/10.1089/chi.2017.0218.

    Article  PubMed  Google Scholar 

  10. Rossen L, Schoendorf K. Measuring health disparities: trends in racial-ethnic and socioeconomic disparities in obesity among 2- to 18-year old youth in the United States, 2001-2010. Ann Epidemiol. 2012;22(10):698–704. https://doi.org/10.1016/j.annepidem.2012.07.005.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Harris K, Kuramoto L, Schulzer M, Retallack J. Effect of school-based physical activity interventions on body mass index in children: a meta-analysis. Can Med Assoc J. 2009;180(7):719–26. https://doi.org/10.1503/cmaj.080966.

    Article  Google Scholar 

  12. van Sluijs E, McMinn A, Griffin S. Effectiveness of interventions to promote physical activity in children and adolescents: systematic review of controlled trials. Br J Sports Med. 2008;42(8):653–7. https://doi.org/10.1136/bmj.39320.843947.BE.

    Article  PubMed  Google Scholar 

  13. Barnett L, van Beurden E, Morgan P, Brooks L, Beard J. Childhood motor skill proficiency as a predictor of adolescent physical activity. J Adolesc Health. 2009;44(3):252–9. https://doi.org/10.1016/j.jadohealth.2008.07.004.

    Article  Google Scholar 

  14. D’Hondt E, Deforche B, Gentier I, De Bourdeaudhuij I, Vaeyens R, Philippaerts R, et al. A longitudinal analysis of gross motor coordination in overweight and obese children versus normal-weight peers. Int J Obesity. 2013;37(1):61–7. https://doi.org/10.1038/ijo.2012.55.

    Article  Google Scholar 

  15. Lima R, Bugge A, Ersboll A, Stodden D, Andersen L. The longitudinal relationship between motor competence and measures of fatness and fitness from childhood into adolescence. J Pediatr (Rio J). 2018. https://doi.org/10.1016/j.jped.2018.02.010.

    Article  Google Scholar 

  16. Lima R, Pfeiffer K, Larsen L, Bugge A, Moller N, Anderson L, et al. Physical activity and motor competence present a positive reciprocal longitudinal relationship across childhood and early adolescence. J Phys Act Health. 2017;14(6):440–7. https://doi.org/10.1123/jpah.2016-0473.

    Article  PubMed  Google Scholar 

  17. Robinson L, Stodden D, Barnett L, Lopes V, Logan S, Rodrigues L, et al. Motor competence and its effect on positive developmental trajectories of health. Sports Med. 2015;45(9):1273–84. https://doi.org/10.1007/s40279-015-0351-6.

    Article  PubMed  Google Scholar 

  18. Rodrigues L, Stodden D, Lopes V. Developmental pathways of change in fitness and motor competence are related to overweight and obesity status at the end of primary school. J Sci Med Sport. 2016;19(1):87–92. https://doi.org/10.1016/j.jsams.2015.01.002.

    Article  PubMed  Google Scholar 

  19. Vandorpe B, Vandendriessche J, Vaeyens R, Pion J, Matthys S, Lefevre J, et al. Relationship between sports participation and the level of motor coordination in childhood: a longitudinal approach. J Sci Med Sport. 2012;15(3):220–5. https://doi.org/10.1016/j.jsams.2011.09.006.

    Article  PubMed  Google Scholar 

  20. Vlahov E, Baghurst T, Mwavita M. Preschool motor development predicting high school health-related physical fitness: a prospective study. Percept Motor Skill. 2014;119(1):279–91. https://doi.org/10.2466/10.25.PMS.119c16z8.

    Article  Google Scholar 

  21. Clark J, Metcalf J. The mountain of motor development: a metaphor. In: Clark J, Humphrey J, editors. Motor development: research and reviews. Reston (VA): National Association for Sport and Physical Education; 2002. p. 163–90.

    Google Scholar 

  22. Stodden D, Goodway J, Langendorfer S, Roberton M, Rudisill M, Garcia C, et al. A developmental perspective on the role of motor skill competence in physical activity: an emergent relationship. Quest. 2008;60(2):290–306. https://doi.org/10.1080/00336297.2008.10483582.

    Article  Google Scholar 

  23. Clark J. Pentimento: a 21st century view on the canvas of motor development. Kines Rev. 2017;6(3):232–9. https://doi.org/10.1123/kr.2017-0020.

    Article  Google Scholar 

  24. Logan S, Robinson L, Wilson A, Lucas W. Getting the fundamentals of movement: a meta-analysis of the effectiveness of motor skill interventions in children. Child Care Health Dev. 2012;38(3):305–15. https://doi.org/10.1111/j.1365-2214.2011.01307.x.

    Article  CAS  PubMed  Google Scholar 

  25. Iivonen S, Sääkslahti A. Preschool children’s fundamental motor skills: a review of significant determinants. Early Child Dev Care. 2014;184(7):1107–26. https://doi.org/10.1080/03004430.2013.837897.

    Article  Google Scholar 

  26. Goodway J, Branta C. Influence of a motor skill intervention on fundamental motor skill development of disadvantaged preschool children. Res Q Exerc Sport. 2003;74(1):36–46. https://doi.org/10.1080/02701367.2003.10609062.

    Article  PubMed  Google Scholar 

  27. Rudisill M, Martin E, Weimar W, Wall S, Valentini N. Fundamental motor skill performance of young children living in urban and rural Alabama. Res Q Exerc Sport. 2002;73(1):A52.

    Google Scholar 

  28. Logan S, Scrabis-Fletcher K, Modlesky C, Getchell N. The relationship between motor skill proficiency and body mass index in preschool children. Res Q Exerc Sport. 2011;82(3):442–8. https://doi.org/10.1080/02701367.2011.10599776.

    Article  PubMed  Google Scholar 

  29. Morgan A, Ziglio E. Revitalising the evidence base for public health: an assets model. Glob Health Promot. 2007;14(2 Suppl.):17–22. https://doi.org/10.1177/10253823070140020701x.

    Article  Google Scholar 

  30. Kit B, Akinbami L, Isfahani N, Ulrich D. Gross motor development in children aged 3-5 years, United States 2012. Maternal Child Health J. 2017;21(7):1573–80. https://doi.org/10.1007/s10995-017-2289-9.

    Article  Google Scholar 

  31. Morano M, Colella D, Caroli M. Gross motor skill performance in a sample of overweight and non-overweight preschool children. Pediatr Obes. 2011;6(2 Suppl.):42–6. https://doi.org/10.3109/17477166.2011.613665.

    Article  Google Scholar 

  32. Williams H, Pfeiffer K, O’Neill J, Dowda M, McIver K, Brown W, et al. Motor skill performance and physical sctivity in preschool children. Obesity. 2008;16(6):1421–6. https://doi.org/10.1038/oby.2008.214.

    Article  PubMed  Google Scholar 

  33. Robinson L, Goodway J. Instructional climates in preschool children who are at-risk. Part I: object-control skill development. Res Q Exerc Sport. 2009;80(3):533–42. https://doi.org/10.1080/02701367.2009.10599591.

  34. Valentini N, Rudisill M. Motivational climate, motor-skill development, and perceived competence: two studies of developmentally delayed kindergarten children. J Teach Phys Educ. 2004;23(3):216–34. https://doi.org/10.1123/jtpe.23.3.216.

    Article  Google Scholar 

  35. Malina R, Bouchard C, Bar-Or O. Growth, maturation, and physical activity. 2nd ed. Champaign (IL): Human Kinetics; 2004.

    Google Scholar 

  36. Goodway J, Robinson L, Crowe H. Gender differences in fundamental motor skill development in disadvantaged preschoolers from two geographical regions. Res Q Exerc Sport. 2010;81(1):17–24. https://doi.org/10.1080/02701367.2010.10599624.

    Article  PubMed  Google Scholar 

  37. Thomas J, French K. Gender differences across age in motor performance: a meta-analysis. Psychol Bull. 1985;98(2):260–82. https://doi.org/10.1037/0033-2909.98.2.260.

    Article  CAS  PubMed  Google Scholar 

  38. Hardy L, King L, Farrell L, Macniven R, Howlett S. Fundamental movement skills among Australian preschool children. J Sci Med Sport. 2010;13(5):503–8. https://doi.org/10.1016/j.jsams.2009.05.010.

    Article  PubMed  Google Scholar 

  39. Tonelli M, Parkin P, Brauer P, Leduc D, Pottie K, Jaramillo Garcia A, et al. Recommendations on screening for developmental delay. Can Med Assoc J. 2016;188(8):579–87. https://doi.org/10.1503/cmaj.151437.

    Article  Google Scholar 

  40. Bellman M, Byrne O, Sege R. Developmental assessment of children. BMJ. 2013;346:e8687. https://doi.org/10.1136/bmj.e8687.

    Article  PubMed  Google Scholar 

  41. Shevell M, Majnemer A, Platt R, Webster R, Birnbaum R. Developmental and functional outcomes at school age of preschool children with global developmental delay. J Child Neurol. 2005;20(8):648–53. https://doi.org/10.1177/08830738050200080301.

    Article  PubMed  Google Scholar 

  42. Levy Y. ‘Developmental delay’ reconsidered: the critical role of age-dependent, co-variant development. Front Psychol. 2018;9:503. https://doi.org/10.3389/fpsyg.2018.00503.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Individuals with Disabilities Education Act, Pub. L. No. 101-476, Stat. 20 U.S.C. § 1400 (2004).

  44. Center ECTA. States’ and territories’ definitions of/criteria for IDEA Part C eligibility. 2015. https://ectacenter.org/~pdfs/topics/earlyid/partc_elig_table.pdf. Accessed 3 Jul 2019.

  45. Brian A, Bardid F, Barnett L, Deconinck F, Lenoir M, Goodway J. Actual and perceived motor competence levels of Belgian and United States preschool children. J Mot Learn Dev. 2018;6(S2):S320–36. https://doi.org/10.1123/jmld.2016-0071.

    Article  Google Scholar 

  46. Brian A, Goodway J, Logan J, Sutherland S. SKIPing with Head Start teachers: influence of T-SKIP on object-control skills. Res Q Exerc Sport. 2017;88(4):479–91. https://doi.org/10.1080/02701367.2017.1375077.

    Article  PubMed  Google Scholar 

  47. Brian A, Goodway J, Logan J, Sutherland S. SKIPing with teachers: an early years motor skill intervention. Phys Educ Sport Pedagogy. 2017;22(3):270–82. https://doi.org/10.1080/17408989.2016.1176133.

    Article  Google Scholar 

  48. Brian A, Taunton S. Effectiveness of motor skill intervention varies based on implementation strategy. Phys Educ Sport Pedagogy. 2018;23(2):222–33. https://doi.org/10.1080/17408989.2017.1413709.

    Article  Google Scholar 

  49. Palmer K, Brian A. Test of Gross Motor Development-2 scores differ between expert and novice coders. J Mot Learn Dev. 2016;4(2):142–51. https://doi.org/10.1123/jmld.2015-0035.

    Article  Google Scholar 

  50. True L, Brian A, Goodway J, Stodden D. Relationships between product- and process-oriented measures of motor competence and perceived competence. J Mot Learn Dev. 2017;5(2):319–35. https://doi.org/10.1123/jmld.2016-0042.

    Article  Google Scholar 

  51. Keys A, Fidanza F, Karvonen M, Kimura N, Taylor H. Indices of relative weight and obesity. J Chron Dis. 1972;25(6):329–43.

    Article  CAS  Google Scholar 

  52. Flegal K, Ogden C. Childhood obesity: are we all speaking the same language? Adv Nutr. 2011;2(2):159S–66S. https://doi.org/10.3945/an.111.000307.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Must A, Anderson S. Body mass index in children and adolescents: considerations for population-based applications. Int J Obesity. 2006;30(4):590–4. https://doi.org/10.1038/sj.ijo.0803300.

    Article  CAS  Google Scholar 

  54. Galobardes B, Shaw M, Lawlor D, Lynch J, Davey Smith G. Indicators of socioeconomic position (part 1). J Epidemiol Commun H. 2006;60(1):7–12. https://doi.org/10.1136/jech.2004.023531.

    Article  Google Scholar 

  55. Ratcliffe M, Burd C, Holder K, Fields A. Defining rural at the U.S. Census Bureau 2016. Report No.: ACSGEO-1.

  56. Ulrich D. Test of Gross Motor Development: examiner’s manual. 2nd ed. Austin (TX): PRO-Ed; 2000.

    Google Scholar 

  57. Stekhoven D, Bühlmann P. MissForest-non-parametric missing value imputation for mixed-type data. Bioinformatics. 2012;28(1):112–8. https://doi.org/10.1093/bioinformatics/btr597.

    Article  CAS  PubMed  Google Scholar 

  58. Tukey J. Exploratory data analysis. Reading: Addison-Wesley; 1977.

    Google Scholar 

  59. Kim H, Carlson A, Curby T, Winsler A. Relations among motor, social, and cognitive skills in pre-kindergarten children with developmental disabilities. Res Dev Disabil. 2016;53–54:43–60. https://doi.org/10.1016/j.ridd.2016.01.016.

    Article  PubMed  Google Scholar 

  60. Leonard H, Hill E. The impact of motor development on typical and atypical social cognition and language: a systematic review. Child Adolesc Ment Health. 2014;19(3):163–70. https://doi.org/10.1111/camh.12055.

    Article  Google Scholar 

  61. Niederer I, Kriemler S, Gut J, Hartmann T, Schindler C, Barral J, et al. Relationship of aerobic fitness and motor skills with memory and attention in preschoolers (Ballabeina): a cross-sectional and longitudinal study. BMC Pediatr. 2011;11:34. https://doi.org/10.1186/1471-2431-11-34.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sacko R, McIver K, Brian A, Stodden D. New insight for activity intensity relativity, metabolic expenditure during object projection skill performance. J Sport Sci. 2018;36(21):2412–8. https://doi.org/10.1080/02640414.2018.1459152.

    Article  Google Scholar 

  63. McWilliams C, Ball S, Benjamin S, Hales D, Vaughn A, Ward D. Best-practice guidelines for physical activity at child care. Pediatrics. 2009;124(6):1650–9. https://doi.org/10.1542/peds.2009-0952.

    Article  PubMed  Google Scholar 

  64. Brian A, Pennell A, Sacko R, Schenkelburg M. Preschool teachers’ preparedness for knowing, enabling, and meeting the active start guidelines for physical activity. J Mot Learn Dev. 2018;6(2):333–44. https://doi.org/10.1123/jmld.2017-0033.

    Article  Google Scholar 

  65. Luz C, Cordovil R, Rodrigues L, Goodway J, Sacko R, Stodden D. Motor competence and health related fitness in children: a cross-cultural comparison between Portugal and the United States. J Sport Health Sci. 2019;8(2):130–6. https://doi.org/10.1016/j.jshs.2019.01.005.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hinkley T, Salmon J, Okely A, Crawford D, Hesketh K. Preschoolers’ physical activity, screen time, and compliance with recommendations. Med Sci Sports Exerc. 2012;44(3):458–65. https://doi.org/10.1249/mss.0b013e318233763b.

    Article  PubMed  Google Scholar 

  67. Webster E, Ulrich D. Evaluation of the psychometric properties of the Test of Gross Motor Development-third edition. J Mot Learn Dev. 2017;5(1):45–58. https://doi.org/10.1123/jmld.2016-0003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Brian.

Ethics declarations

Funding

No financial support was received for the conduct of this study or preparation of this article.

Conflict of interest

Ali Brian, Adam Pennell, Sally Taunton, Angela Starrett, Candice Howard-Shaughnessy, Jacqueline D. Goodway, Danielle Wadsworth, Mary Rudisill, and David Stodden have no conflicts of interest that are directly relevant to the content of this article.

Additional information

The original version of this article was revised: Due to changes in the Abstract

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brian, A., Pennell, A., Taunton, S. et al. Motor Competence Levels and Developmental Delay in Early Childhood: A Multicenter Cross-Sectional Study Conducted in the USA. Sports Med 49, 1609–1618 (2019). https://doi.org/10.1007/s40279-019-01150-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-019-01150-5

Navigation