Skip to main content
Log in

Analysis of Lower Extremity Proprioception for Anterior Cruciate Ligament Injury Prevention: Current Opinion

  • Current Opinion
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Lower extremity musculoskeletal injuries—such as ACL injury—are common, and the majority of those injuries occur without external player contact. In order to prevent non-contact musculoskeletal injuries, athletes must rely on accurate sensory information (such as visual, vestibular, and somatosensory) and stabilize joints during athletic tasks. Previously, proprioception tests (the senses of joint position, movement, tension or force) have been examined using static tests. Due to the role of proprioception in achievement of joint stability, it is essential to explore the development of dynamic proprioception tests. In this current opinion, the basic background on proprioception is covered, and the research gaps and future directions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bates NA, Ford KR, Myer GD, Hewett TE. Impact differences in ground reaction force and center of mass between the first and second landing phases of a drop vertical jump and their implications for injury risk assessment. J Biomech. 2013;46(7):1237–41.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hewett TE, Myer GD, Ford KR. Anterior cruciate ligament injuries in female athletes: part 1, mechanisms and risk factors. Am J Sports Med. 2006;34(2):299–311.

    Article  PubMed  Google Scholar 

  3. Agel J, Rockwood T, Klossner D. Collegiate ACL injury rates across 15 sports: National Collegiate Athletic Association injury surveillance system data update (2004–2005 through 2012–2013). Clin J Sport Med. 2016;26(6):518–23.

    Article  PubMed  Google Scholar 

  4. Stanley LE, Kerr ZY, Dompier TP, Padua DA. Sex differences in the incidence of anterior cruciate ligament, medial collateral ligament, and meniscal injuries in collegiate and high school sports: 2009–2010 through 2013–2014. Am J Sports Med. 2016;44(6):1565–72.

    Article  PubMed  Google Scholar 

  5. Hewett TE, Myer GD, Ford KR, Heidt RS Jr, Colosimo AJ, McLean SG, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492–501.

    Article  PubMed  Google Scholar 

  6. Bates NA, Nesbitt RJ, Shearn JT, Myer GD, Hewett TE. Relative strain in the anterior cruciate ligament and medial collateral ligament during simulated jump landing and sidestep cutting tasks: implications for injury risk. Am J Sports Med. 2015;43(9):2259–69.

    Article  PubMed  Google Scholar 

  7. Schilaty ND, Nagelli C, Bates NA, Sanders TL, Krych AJ, Stuart MJ, et al. Incidence of second anterior cruciate ligament tears and identification of associated risk factors from 2001 to 2010 using a geographic database. Orthop J Sports Med. 2017;5(8):2325967117724196.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23(6):573–8.

    CAS  PubMed  Google Scholar 

  9. Sjolander P, Johansson H, Djupsjobacka M. Spinal and supraspinal effects of activity in ligament afferents. J Electromyogr Kinesiol. 2002;12(3):167–76.

    Article  PubMed  Google Scholar 

  10. Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol. 2006;16(6):645–9.

    Article  CAS  PubMed  Google Scholar 

  11. Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J. Deficits in neuromuscular control of the trunk predict knee injury risk: a prospective biomechanical-epidemiologic study. Am J Sports Med. 2007;35(7):1123–30.

    Article  PubMed  Google Scholar 

  12. Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J. The effects of core proprioception on knee injury: a prospective biomechanical-epidemiological study. Am J Sports Med. 2007;35(3):368–73.

    Article  PubMed  Google Scholar 

  13. Andrews JR, Harrelson GL, Wilk KE. Physical rehabilitation of the injured athletes. 4th ed. Philadelphia: Saunders; 2012.

    Google Scholar 

  14. Nagai T, Allison KF, Schmitz JL, Sell TC, Lephart SM. Conscious proprioception assessments in sports medicine: How individuals perform each submodality? Sports medicine (ebook). Dover: SM Online Scientific Resources; 2016. p. 1–13.

    Google Scholar 

  15. Hall LA, McCloskey DI. Detections of movements imposed on finger, elbow and shoulder joints. J Physiol. 1983;335:519–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Refshauge KM, Chan R, Taylor JL, McCloskey DI. Detection of movements imposed on human hip, knee, ankle and toe joints. J Physiol. 1995;1(488):231–41.

    Article  Google Scholar 

  17. Proske U. Kinesthesia: the role of muscle receptors. Muscle Nerve. 2006;34(5):545–58.

    Article  CAS  PubMed  Google Scholar 

  18. Proske U, Gandevia SC. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev. 2012;92(4):1651–97.

    Article  CAS  PubMed  Google Scholar 

  19. Zimny ML, Wink CS. Neuroreceptors in the tissues of the knee joint. J Electromyogr Kinesiol. 1991;1(3):148–57.

    Article  CAS  PubMed  Google Scholar 

  20. Gandevia SC, Smith JL, Crawford M, Proske U, Taylor JL. Motor commands contribute to human position sense. J Physiol. 2006;571(Pt 3):703–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Borsa PA, Lephart SM, Irrgang JJ, Safran MR, Fu FH. The effects of joint position and direction of joint motion on proprioceptive sensibility in anterior cruciate ligament-deficient athletes. Am J Sports Med. 1997;25(3):336–40.

    Article  CAS  PubMed  Google Scholar 

  22. Rozzi SL, Lephart SM, Gear WS, Fu FH. Knee joint laxity and neuromuscular characteristics of male and female soccer and basketball players. Am J Sports Med. 1999;27(3):312–9.

    Article  CAS  PubMed  Google Scholar 

  23. Nagai T, Sell TC, Abt JP, Lephart SM. Reliability, precision, and gender differences in knee internal/external rotation proprioception measurements. Phys Ther Sport. 2012;13(4):233–7.

    Article  PubMed  Google Scholar 

  24. Reider B, Arcand MA, Diehl LH, Mroczek K, Abulencia A, Stroud CC, et al. Proprioception of the knee before and after anterior cruciate ligament reconstruction. Arthroscopy. 2003;19(1):2–12.

    Article  PubMed  Google Scholar 

  25. Bonfim TR, Jansen Paccola CA, Barela JA. Proprioceptive and behavior impairments in individuals with anterior cruciate ligament reconstructed knees. Arch Phys Med Rehabil. 2003;84(8):1217–23.

    Article  PubMed  Google Scholar 

  26. Young SW, Valladares RD, Loi F, Dragoo JL. Mechanoreceptor reinnervation of autografts versus allografts after anterior cruciate ligament reconstruction. Orthop J Sports Med. 2016;4(10):2325967116668782.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wilk KE, Arrigo CA. Rehabilitation principles of the anterior cruciate ligament reconstructed knee: twelve steps for successful progression and return to play. Clin Sports Med. 2017;36(1):189–232.

    Article  PubMed  Google Scholar 

  28. Bhanpuri NH, Okamura AM, Bastian AJ. Predictive modeling by the cerebellum improves proprioception. J Neurosci. 2013;33(36):14301–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Clark FJ, Burgess RC, Chapin JW, Lipscomb WT. Role of intramuscular receptors in the awareness of limb position. J Neurophysiol. 1985;54(6):1529–40.

    Article  CAS  PubMed  Google Scholar 

  30. Vila-Cha C, Riis S, Lund D, Moller A, Farina D, Falla D. Effect of unaccustomed eccentric exercise on proprioception of the knee in weight and non-weight bearing tasks. J Electromyogr Kinesiol. 2011;21(1):141–7.

    Article  PubMed  Google Scholar 

  31. Kramer J, Handfield T, Kiefer G, Forwell L, Birmingham T. Comparisons of weight-bearing and non-weight-bearing tests of knee proprioception performed by patients with patello-femoral pain syndrome and asymptomatic individuals. Clin J Sport Med. 1997;7(2):113–8.

    Article  CAS  PubMed  Google Scholar 

  32. Bennell K, Wee E, Crossley K, Stillman B, Hodges P. Effects of experimentally-induced anterior knee pain on knee joint position sense in healthy individuals. J Orthop Res. 2005;23(1):46–53.

    Article  PubMed  Google Scholar 

  33. Hewett TE, Paterno MV, Myer GD. Strategies for enhancing proprioception and neuromuscular control of the knee. Clin Orthop. 2002;402:76–94.

    Article  Google Scholar 

  34. Foch E, Milner CE. Agreement between weight bearing and non-weight bearing joint position replication tasks at the knee and hip. J Sports Sci. 2013;31(14):1553–8.

    Article  PubMed  Google Scholar 

  35. Weeks HM, Therrien AS, Bastian AJ. The cerebellum contributes to proprioception during motion. J Neurophysiol. 2017;118(2):693–702.

    Article  PubMed  Google Scholar 

  36. Boisgontier MP, Swinnen SP. Proprioception in the cerebellum. Front Hum Neurosci. 2014;8:212.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Prochazka A, Hulliger M. The continuing debate about CNS control of proprioception. J Physiol. 1998;513(Pt 2):315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Johansson H. Role of knee ligaments in proprioception and regulation of muscle stiffness. J Electromyograp Kinesiol. 1991;1(3):158–79.

    Article  CAS  Google Scholar 

  39. Riemann BL, Lephart SM. The sensorimotor system, part II: the role of proprioception in motor control and functional joint stability. J Athl Train. 2002;37(1):80–4.

    PubMed  PubMed Central  Google Scholar 

  40. Sinkjaer T, Toft E, Andreassen S, Hornemann BC. Muscle stiffness in human ankle dorsiflexors: intrinsic and reflex components. J Neurophysiol. 1988;60(3):1110–21.

    Article  CAS  PubMed  Google Scholar 

  41. Rack PM, Westbury DR. The short range stiffness of active mammalian muscle and its effect on mechanical properties. J Physiol. 1974;240(2):331–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nagai T, Sell TC, House AJ, Abt JP, Lephart SM. Knee proprioception and strength and landing kinematics during a single-leg stop-jump task. J Athl Train. 2013;48(1):31–8.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liederbach M, Dilgen FE, Rose DJ. Incidence of anterior cruciate ligament injuries among elite ballet and modern dancers: a 5-year prospective study. Am J Sports Med. 2008;36(9):1779–88.

    Article  PubMed  Google Scholar 

  44. Ambegaonkar JP, Shultz SJ, Perrin DH, Schmitz RJ, Ackerman TA, Schulz MR. Lower body stiffness and muscle activity differences between female dancers and basketball players during drop jumps. Sports Health. 2011;3(1):89–96.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lephart SM, Giraldo JL, Borsa PA, Fu FH. Knee joint proprioception: a comparison between female intercollegiate gymnasts and controls. Knee Surg Sports Traumatol Arthrosc. 1996;4(2):121–4.

    Article  CAS  PubMed  Google Scholar 

  46. Barrack RL, Skinner HB, Cook SD. Proprioception of the knee joint. Paradoxical effect of training. Am J Phys Med. 1984;63(4):175–81.

    CAS  PubMed  Google Scholar 

  47. Sugimoto D, Myer GD, Barber Foss KD, Pepin MJ, Micheli LJ, Hewett TE. Critical components of neuromuscular training to reduce ACL injury risk in female athletes: meta-regression analysis. Br J Sports Med. 2016;50(20):1259–66.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hewett TE, Lindenfeld TN, Riccobene JV, Noyes FR. The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. Am J Sports Med. 1999;27(6):699–706.

    Article  CAS  PubMed  Google Scholar 

  49. Hewett TE, Stroupe AL, Nance TA, Noyes FR. Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am J Sports Med. 1996;24(6):765–73.

    Article  CAS  PubMed  Google Scholar 

  50. Ozer D, Duzgun I, Baltaci G, Karacan S, Colakoglu F. The effects of rope or weighted rope jump training on strength, coordination and proprioception in adolescent female volleyball players. J Sports Med Phys Fitness. 2011;51(2):211–9.

    CAS  PubMed  Google Scholar 

  51. Salgado E, Ribeiro F, Oliveira J. Joint-position sense is altered by football pre-participation warm-up exercise and match induced fatigue. Knee. 2015;22(3):243–8.

    Article  PubMed  Google Scholar 

  52. Proske U, Allen TJ. Damage to skeletal muscle from eccentric exercise. Exerc Sport Sci Rev. 2005;33(2):98–104.

    Article  PubMed  Google Scholar 

  53. Shiravand M, Rashedi H, Beigrezai M. A comparison of the effects of long term concentric versus eccentric exercise on knee joint position sense of healthy females. Ind J Fundam Appl Life Sci. 2014;4(3):45–9.

    Google Scholar 

  54. Walsh GS. Effect of static and dynamic muscle stretching as part of warm up procedures on knee joint proprioception and strength. Hum Mov Sci. 2017;55:189–95.

    Article  PubMed  Google Scholar 

  55. Bartlett MJ, Warren PJ. Effect of warming up on knee proprioception before sporting activity. Br J Sports Med. 2002;36(2):132–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Larsen R, Lund H, Christensen R, Rogind H, Danneskiold-Samsoe B, Bliddal H. Effect of static stretching of quadriceps and hamstring muscles on knee joint position sense. Br J Sports Med. 2005;39(1):43–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Panics G, Tallay A, Pavlik A, Berkes I. Effect of proprioception training on knee joint position sense in female team handball players. Br J Sports Med. 2008;42(6):472–6.

    Article  CAS  PubMed  Google Scholar 

  58. Taube W, Kullmann N, Leukel C, Kurz O, Amtage F, Gollhofer A. Differential reflex adaptations following sensorimotor and strength training in young elite athletes. Int J Sports Med. 2007;28(12):999–1005.

    Article  CAS  PubMed  Google Scholar 

  59. Freyler K, Krause A, Gollhofer A, Ritzmann R. Specific stimuli induce specific adaptations: sensorimotor training vs reactive balance training. PLoS One. 2016;11(12):e0167557.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Li S, Zhuang C, Hao M, He X, Marquez JC, Niu CM, et al. Coordinated alpha and gamma control of muscles and spindles in movement and posture. Front Comput Neurosci. 2015;9:122.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee SJ, Ren Y, Chang AH, Geiger F, Zhang LQ. Effects of pivoting neuromuscular training on pivoting control and proprioception. Med Sci Sports Exerc. 2014;46(7):1400–9.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Blackburn JT, Norcross MF. The effects of isometric and isotonic training on hamstring stiffness and anterior cruciate ligament loading mechanisms. J Electromyogr Kinesiol. 2014;24(1):98–103.

    Article  PubMed  Google Scholar 

  63. Shultz SJ, Perrin DH. Using surface electromyography to assess sex difference in neuromuscular response characteristics. J Athl Train. 1999;34(2):165–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hug F, Tucker K, Gennisson JL, Tanter M, Nordez A. Elastography for muscle biomechanics: toward the estimation of individual muscle force. Exerc Sport Sci Rev. 2015;43(3):125–33.

    Article  PubMed  Google Scholar 

  65. Brooks MA, Peterson K, Biese K, Sanfilippo J, Heiderscheit BC, Bell DR. Concussion increases odds of sustaining a lower extremity musculoskeletal injury after return to play among collegiate athletes. Am J Sports Med. 2016;44(3):742–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan D. Schilaty.

Ethics declarations

Funding

The authors acknowledge funding from the National Institute of Arthritis and Musculoskeletal and Skin Diseases: R01AR056259 and R01AR055563 to TEH and L30AR070273 to NDS, and from the National Institute of Child Health and Human Development: K12HD065987 to NDS.

Conflicts of Interest

Takashi Nagai, Nathan Schilaty, Jeffrey Strauss, Eric Crowley, and Timothy Hewett declare that they have no conflicts of interest relevant to the content of this article.

Additional information

Takashi Nagai and Nathan D. Schilaty are co-primary authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagai, T., Schilaty, N.D., Strauss, J.D. et al. Analysis of Lower Extremity Proprioception for Anterior Cruciate Ligament Injury Prevention: Current Opinion. Sports Med 48, 1303–1309 (2018). https://doi.org/10.1007/s40279-018-0889-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-018-0889-1

Navigation